Spectrochim Acta A Mol Biomol Spectrosc
November 2009
Zinc meso-tetraphenylporphyrin (ZnTPP) was modified in such a way to allow the effect of an asymmetric structural distortion on its optical properties to be investigated. This involved the fusion of a phenyl group to an adjacent pyrrole ring via a carbonyl bridge. With the aid of Density Functional Theory (DFT) and time-dependent DFT (TD-DFT) calculations it was found that the asymmetric distortion away from planarity induced by the carbonyl fusion resulted in a loss of degeneracy in the two lowest unoccupied molecular orbitals (LUMOs).
View Article and Find Full Text PDFZn(II) and Cu(II) porphyrins with beta-conjugated barbiturate functional groups have low-energy electronic transitions which are unusual in that there are two strong bands in the Soret region. Resonance excitation of the two bands shows that each has features characteristic of both the porphyrin and barbiturate groups, with some perturbation to these features caused by the interaction of the two chromophores. The resonance Raman (RR) spectrum (lambda(exc)=413.
View Article and Find Full Text PDFA series of novel zinc metalloporphyrins, cyano-3-(2'-(5',10',15',20'-tetraphenylporphyrinato zinc(II))yl)-acrylic acid (Zn-3), 3-(trans-2'-(5',10',15',20'-tetraphenylporphyrinato zinc(II))yl)-acrylic acid (Zn-5), 2-cyano-5-(2'-(5',10',15',20'-tetraphenylporphyrinato zinc(II))yl)-penta-2,4-dienoic acid (Zn-8), 4-(trans-2'-(2' '-(5' ',10' ',15' ',20' '-tetraphenylporphyrinato zinc(II))yl)ethen-1'-yl))-1,2-benzenedicarboxylic acid (Zn-11), and 2-cyano-3-[4'-(trans-2' '-(2' ''-(5' '',10' '',15' '',20' ''-tetraphenylporphyrinato zinc(II))yl) ethen-1' '-yl)-phenyl]-acrylic acid (Zn-13) were synthesized and characterized by using various spectroscopic techniques. Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations show that key molecular orbitals (MOs) of porphyrins Zn-5 and Zn-3 are stabilized and extended out onto the substituent by pi-conjugation, causing enhancement and red shifts of visible transitions and increasing the possibility of electron transfer from the substituent. The porphyrins were investigated for conversion of sunlight into electricity by constructing dye-sensitized TiO(2) solar cells using an I(-)/I(3)(-) electrolyte.
View Article and Find Full Text PDFCopper(I) and rhenium(I) complexes [Cu(PPh(3))(2)(dppz-11-COOEt)]BF(4), [Cu(PPh(3))(2)(dppz-11-Br)]BF(4), [Re(CO)(3)Cl(dppz-11-COOEt)] and [Re(CO)(3)Cl(dppz-11-Br)] (dppz-11-COOEt = dipyrido-[3,2a:2',3'c]phenazine-11-carboxylic ethyl ester, dppz-11-Br = 11-bromo-dipyrido[3,2a:2',3'c]-phenazine) have been studied using Raman, resonance Raman, and transient resonance Raman (TR(2)) spectroscopy, in conjunction with computational chemistry. DFT (B3LYP) frequency calculations with a 6-31G(d) basis set for the ligands and copper(I) centers and an effective core potential (LANL2DZ) for rhenium in the rhenium(I) complexes show close agreement with the experimental nonresonance Raman spectra. Modes that are phenazine-based, phenanthroline-based, and delocalized across the entire ligand structure were identified.
View Article and Find Full Text PDFThe ligands 11-bromodipyrido[3,2-a:2',3'-c]phenazine and ethyl dipyrido[3,2-a:2',3'-c]phenazine-11-carboxylate have been prepared and coordinated to ruthenium(II), rhenium(I), and copper(I) metal centers. The electronic effects of substitution of dipyrido[2,3-a:3',2'-c]phenazine (dppz) have been investigated by spectroscopy and electrochemistry, and some photophysical properties have been studied. The crystal structures of [Re(L)(CO)(3)Cl] (L = ethyl dipyrido[3,2-a:2',3'-c]phenazine-11-carboxylate or 11-bromodipyrido[3,2-a:2',3'-c]phenazine) are presented.
View Article and Find Full Text PDF