The Circular Electron-Positron Collider (CEPC) in China can also work as an excellent powerful synchrotron light source, which can generate high-quality synchrotron radiation. This synchrotron radiation has potential advantages in the medical field as it has a broad spectrum, with energies ranging from visible light to X-rays used in conventional radiotherapy, up to several megaelectronvolts. FLASH radiotherapy is one of the most advanced radiotherapy modalities.
View Article and Find Full Text PDFBackground: Positron emission tomography (PET) has been investigated for its ability to reconstruct proton-induced positron activity distributions in proton therapy. This technique holds potential for range verification in clinical practice. Recently, deep learning-based dose estimation from positron activity distributions shows promise for in vivo proton dose monitoring and guided proton therapy.
View Article and Find Full Text PDFImmunotherapy is a promising mainstream approach in anti-tumor therapy. It boasts advantages such as durable responses and lower side effects. However, there are still some limitations to be addressed.
View Article and Find Full Text PDFDue to the unique ability to mimic natural enzymes, single-atom nanoenzymes (SAE) have garnered significant attention and research in tumor therapy. However, their efficacy often faces challenges in terms of drug delivery methods, and the research regarding their applications in radiotherapy is scarce. Herein, we introduce a light-controlled SAE hydrogel platform (SH) for glutathione-depletion-mediated low-dose radiotherapy.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
July 2023
Radiotherapy (RT) efficacy can be promoted with the help of nanoenzyme that can "re-programing" the tumour's micro-environment by changing the expression level of special bio-molecules. However, problems such as low reaction efficiency, limited endogenous HO, and/or unsatisfactory results of a single catalysis mode in treatment limit the application in the RT field. Herein, a novel Au nanoparticles (AuNPs) decorated iron SAE (FeSAE@Au) was formulated for self-cascade catalytic RT.
View Article and Find Full Text PDFJ Synchrotron Radiat
January 2023
In beamline design, there are many floating parameters that need to be tuned; manual optimization is time-consuming and laborious work, and it is also difficult to obtain well optimized results. Moreover, there are always several objectives that need to be considered and optimized at the same time, making the problem more complicated. For example, asking for both the flux and energy to be as large as possible is a usual requirement, but the changing trends of these two variables are often contradictory.
View Article and Find Full Text PDFChemodynamic therapy (CDT) is an effective anti-tumor method, while CDT alone cannot achieve a good therapeutic effect. Moreover, the overexpression of glutathione (GSH) in tumor cells dramatically limits the efficiency of CDT. Here, we proposed a hydrogel co-loading SO prodrug and FeGA nanoparticles (NPs) for enhancing CDT by photothermal-triggered SO gas therapy (FBH) system by mixing benzothiazolyl sulfonates (BTS) and FeGA NPs in a certain ratio and encapsulating them in a heat-sensitive hydrogel.
View Article and Find Full Text PDFSingle photothermal therapy (PTT) has many limitations in tumor treatments. Multifunctional nanomaterials can cooperate with PTT to achieve profound tumor killing performance. Herein, we encapsulated chemotherapeutic drug camptothecin (CPT) and pyrite (FeS) with dual enzyme activity (glutathione oxidase (GSH-OXD) and peroxidase (POD) activities) into an injectable hydrogel to form a CFH system, which can improve the level of intratumoral oxidative stress, and simultaneously realize FeS-mediated PTT and nanozymes catalytic treatment.
View Article and Find Full Text PDFSingle-atom nanozyme (SAzyme) systems have shown great potential in tumor therapy. A multifunctional SAzyme not only possesses high catalytic activity but also can be used as photothermal agents in photothermal therapy (PTT). Furthermore, it is also imperative to overcome tumor thermal resistance in SAzyme-based PTT so that PTT under a mild temperature is achievable.
View Article and Find Full Text PDFPurpose: In vivo range and dose verification based on proton-induced acoustics (protoacoustics) is potentially a useful tool for proton therapy. Built upon our previous study with two-dimensional reconstruction, the time reversal (TR) method was extended to three-dimensional (3D) and evaluated at two treatment sites (head and liver) through simulation, with the emphasis on a number of aspects such as increased spatial coverage, computational workload, and signal interference among slices.
Methods: Two mono-energetic pencil beams were modeled in each site.
Correction for 'The potential role of borophene as a radiosensitizer in boron neutron capture therapy (BNCT) and particle therapy (PT)' by Pengyuan Qi et al., Biomater. Sci.
View Article and Find Full Text PDFThe potential role of borophene as a radiosensitizer in PT and BNCT was investigated. Our study focused on two aspects: (1) the synthesis and characterization of borophene nanomaterials; and (2) biocompatibility and dose enhancement. To overcome the limitation of vapor-based technology, we successfully deployed the liquid-phase exfoliation (LPE) method to produce borophene targeting for biomedical applications.
View Article and Find Full Text PDFTemperature distribution is an important process parameter of steel plates during electromagnetic induction heating treatment. This study uses the digital image correlation method to develop an effective non-contact temperature measurement that allows obtaining valuable information about the temperature value of a high temperature steel plate specimen and analyzing its temperature distribution. A principle of thermal radiation temperature measurement based on the color chagre couled device (CCD) technology was introduced.
View Article and Find Full Text PDFTwo-component signal transduction systems (TCSs) are widely used by bacteria to adapt to the environment. In the present study, StoS (stress tolerance-related oxygen sensor) and SreKRS (salt response kinase, regulator, and sensor) were found to positively regulate extracellular polysaccharide (EPS) production and swarming in the rice pathogen Xanthomonas oryzae pv. oryzae (Xoo).
View Article and Find Full Text PDF