Simultaneous ground-state cooling of multiple degenerate mechanical modes is a difficult issue in optomechanical systems, owing to the existence of the dark mode effect. Here we propose a universal and scalable method to break the dark mode effect of two degenerate mechanical modes by introducing cross-Kerr (CK) nonlinearity. At most, four stable steady states can be achieved in our scheme in the presence of the CK effect, unlike the bistable behavior of the standard optomechanical system.
View Article and Find Full Text PDFIn this paper, we propose a 1-dimensional optomechanical lattice which possesses non-Hermitian property due to its nonreciprocal couplings. We calculated the energy spectrum under periodical boundary condition and open boundary condition, respectively. To investigate the transmission property of the system, we calculate the Green function of the system using non-Bloch band theory.
View Article and Find Full Text PDFWhispering-gallery-mode (WGM) microcavities have shown significant applications in nanoparticle sensing for environmental monitoring and biological analysis. However, the enhancement of detection resolution often calls for active cavities or elaborate structural designs, leading to an increase of fabrication complexity and cost. Herein, heterodyne amplification is implemented in WGM microsensors based on backscattering detection mechanism.
View Article and Find Full Text PDFSci Bull (Beijing)
February 2020
There is a remarkable characteristic of photosynthesis in nature, that is, the energy transfer efficiency is close to 100%. Recently, due to the rapid progress made in the experimental techniques, quantum coherent effects have been experimentally demonstrated. Traditionally, the incoherent theories are capable of calculating the energy transfer efficiency, e.
View Article and Find Full Text PDF