Publications by authors named "Pengyong Zhou"

Synthetic chemical elicitors, so called plant strengtheners, can protect plants from pests and pathogens. Most plant strengtheners act by modifying defense signaling pathways, and little is known about other mechanisms by which they may increase plant resistance. Moreover, whether plant strengtheners that enhance insect resistance actually enhance crop yields is often unclear.

View Article and Find Full Text PDF

In response to infestation by herbivores, rice plants rapidly biosynthesize defense compounds by activating a series of defense-related pathways. However, which defensive compounds in rice are effective against herbivores remains largely unknown. We found that the infestation of white-backed planthopper (WBPH) Sogatella furcifera gravid females significantly increased levels of jasmonic acid (JA), jasmonoyl-isoleucine (JA-Ile) and HO, and reduced the level of ethylene in rice; levels of 11 of the tested 12 phenolamides (PAs) were subsequently enhanced.

View Article and Find Full Text PDF

Plants undergo several but very precise molecular, physiological, and biochemical modulations in response to biotic stresses. Mitogen-activated protein kinase (MAPK) cascades orchestrate multiple cellular processes including plant growth and development as well as plant responses against abiotic and biotic stresses. However, the role of MAPK kinases (MAPKKs/MKKs/MEKs) in the regulation of plant resistance to herbivores has not been extensively investigated.

View Article and Find Full Text PDF

Chemical elicitors that enhance plant resistance to pathogens have been extensively studied, however, chemical elicitors that induce plant defenses against insect pests have received little attention. Here, we found that the exogenous application of a commonly used bactericide, bismerthiazol, on rice induced the biosynthesis of constitutive and/or elicited jasmonic acid (JA), jasmonoyl-isoleucine conjugate (JA-Ile), ethylene and H₂O₂ but not salicylic acid. These activated signaling pathways altered the volatile profile of rice plants.

View Article and Find Full Text PDF

Natural products are a major source of biological molecules. The 3-methylfuran scaffold is found in a variety of plant secondary metabolite chemical elicitors that confer host-plant resistance against insect pests. Herein, the diversity-oriented synthesis of a natural-product-like library is reported, in which the 3-methylfuran core is fused in an angular attachment to six common natural product scaffolds-coumarin, chalcone, flavone, flavonol, isoflavone and isoquinolinone.

View Article and Find Full Text PDF