Background: Oxidative stress is a cellular characteristic that might induce the proliferation and differentiation of tumor cells and promote tumor progression in diffuse large B-cell lymphoma (DLBCL).
Methods: The DLBCL gene sequencing dataset, tumor mutation burden data, copy number variation data of Somatic cell mutation data in TCGA were downloaded for data training analysis, along with four DLBCL datasets in GEO for validation analysis. The known oxidative stress related genes (OSRGs) were collected from websites.
Relapsed and refractory diffuse large B-cell lymphoma (DLBCL) is associated with poor prognosis. As such, a comprehensive analysis of intratumoral components, intratumoral heterogeneity, and the immune microenvironment is essential to elucidate the mechanisms driving the progression of DLBCL and to develop new therapeutics. Here, we used single-cell transcriptome sequencing and conventional bulk next-generation sequencing (NGS) to understand the composite tumor landscape of a single patient who had experienced multiple tumor recurrences following several chemotherapy treatments.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2015
Compared with clinical and experimental approaches, numerical modeling of defibrillation offers a great opportunity to optimize the defibrillation strategy in a more individualized way. Through numerical simulation of the shock-induce electric field distribution, the outcome of a certain defibrillation shock could be predicted according to several different metrics. In this paper, we propose a novel evaluation method, in which four defibrillation criteria are assigned with separate weighting factors to quantitatively assess the efficiency of a certain defibrillation shock.
View Article and Find Full Text PDF