Publications by authors named "Pengyao Ping"

The COVID-19 pandemic caused by SARS-CoV-2 has had a severe impact on people worldwide. The reference genome of the virus has been widely used as a template for designing mRNA vaccines to combat the disease. In this study, we present a computational method aimed at identifying co-existing intra-host strains of the virus from RNA-sequencing data of short reads that were used to assemble the original reference genome.

View Article and Find Full Text PDF

In recent years, with the rapid development of techniques in bioinformatics and life science, a considerable quantity of biomedical data has been accumulated, based on which researchers have developed various computational approaches to discover potential associations between human microbes, drugs and diseases. This paper provides a comprehensive overview of recent advances in prediction of potential correlations between microbes, drugs and diseases from biological data to computational models. Firstly, we introduced the widely used datasets relevant to the identification of potential relationships between microbes, drugs and diseases in detail.

View Article and Find Full Text PDF

Raw sequencing reads of miRNAs contain machine-made substitution errors, or even insertions and deletions (indels). Although the error rate can be low at 0.1%, precise rectification of these errors is critically important because isoform variation analysis at single-base resolution such as novel isomiR discovery, editing events understanding, differential expression analysis, or tissue-specific isoform identification is very sensitive to base positions and copy counts of the reads.

View Article and Find Full Text PDF

A lot of research studies have shown that many complex human diseases are associated not only with microRNAs (miRNAs) but also with long noncoding RNAs (lncRNAs). However, most of the current existing studies focus on the prediction of disease-related miRNAs or lncRNAs, and to our knowledge, until now, there are few literature studies reported to pay attention to the study of impact of miRNA-lncRNA pairs on diseases, although more and more studies have shown that both lncRNAs and miRNAs play important roles in cell proliferation and differentiation during the recent years. The identification of disease-related genes provides great insight into the underlying pathogenesis of diseases at a system level.

View Article and Find Full Text PDF

An increasing number of studies have indicated that long-non-coding RNAs (lncRNAs) play critical roles in many important biological processes. Predicting potential lncRNA-disease associations can improve our understanding of the molecular mechanisms of human diseases and aid in finding biomarkers for disease diagnosis, treatment, and prevention. In this paper, we constructed a bipartite network based on known lncRNA-disease associations; based on this work, we proposed a novel model for inferring potential lncRNA-disease associations.

View Article and Find Full Text PDF

An increasing number of studies have indicated that long-non-coding RNAs (lncRNAs) play crucial roles in biological processes, complex disease diagnoses, prognoses, and treatments. However, experimentally validated associations between lncRNAs and diseases are still very limited. Recently, computational models have been developed to discover potential associations between lncRNAs and diseases by integrating multiple heterogeneous biological data; this has become a hot topic in biological research.

View Article and Find Full Text PDF

Motivation: Increasing studies have demonstrated that many human complex diseases are associated with not only microRNAs, but also long-noncoding RNAs (lncRNAs). LncRNAs and microRNA play significant roles in various biological processes. Therefore, developing effective computational models for predicting novel associations between diseases and lncRNA-miRNA pairs (LMPairs) will be beneficial to not only the understanding of disease mechanisms at lncRNA-miRNA level and the detection of disease biomarkers for disease diagnosis, treatment, prognosis, and prevention, but also the understanding of interactions between diseases and LMPairs at disease level.

View Article and Find Full Text PDF

Background: Recently, numerous laboratory studies have indicated that many microRNAs (miRNAs) are involved in and associated with human diseases and can serve as potential biomarkers and drug targets. Therefore, developing effective computational models for the prediction of novel associations between diseases and miRNAs could be beneficial for achieving an understanding of disease mechanisms at the miRNA level and the interactions between diseases and miRNAs at the disease level. Thus far, only a few miRNA-disease association pairs are known, and models analyzing miRNA-disease associations based on lncRNA are limited.

View Article and Find Full Text PDF