With the advent of the smart era, the demand for clean energy is rising, and flexible triboelectric nanogenerators (F-TENGs) based on elastomers have garnered significant attention. Based on the principles of electrostatic induction and coupling, F-TENGs can convert mechanical motion into electrical energy and are widely utilized in wearable devices and blue energy. F-TENGs offer a simple design, ease of manufacturing, and flexible usage scenarios.
View Article and Find Full Text PDFConductive hydrogels have attracted significant research interest in flexible electronics owing to their intrinsic flexibility and biocompatibility. However, the rapid and sustainable fabrication of green conductive hydrogels with excellent mechanical and conductive properties remains a significant challenge. Inspired by the structure of human skin, modified polysaccharide-reinforced polyvinyl alcohol (PVA) ionic conductive hydrogels with tailored properties were developed through Zn coordination and Hofmeister effect.
View Article and Find Full Text PDFSolid polymer electrolytes (SPEs) are a key materials component for all-solid-state lithium metal batteries (ASSLMBs). In these membrane-like films, accelerating Li migration while enhancing the mechanical strength of SPEs is challenging. Herein, we introduce a new concept of supramolecularly organized, cross-linked polymer electrolyte (PCPE) by mixing an ion-conducting, multi-arm boron-containing oligomer (MBO) solid plasticizer into a polyethylene oxide (PEO)-lithium salt matrix.
View Article and Find Full Text PDFDespite the significant advantages of conductive hydrogels in flexible sensing, their further development is often hindered by limitations in strength and conductivity. In this work, the ionic conductive hydrogels with tunable mechanical and conductive properties were designed by utilizing sodium alginate (SA) to reinforce the polyvinyl alcohol (PVA) networks, followed by the respective introduction of LiSO, ZnSO, and Fe(SO), leveraging the Hofmeister effect and metal coordination. Consequently, the mechanical properties (σ = 0.
View Article and Find Full Text PDFIn this work, a novel bio-based polyphenol diol intermediate (VDP) was synthesized through a combination of aldimine condensation and addition reactions, utilizing vanillin, 4,4'diamino diphenylmethane (DDM), and 9,10-dihydro-9-oxa-10-phospha-phenanthrene-10-oxide (DOPO) as reactants, then various contents of VDP was introduced covalently into the polyurethane backbone. The integration of VDP has notably improved the flame retardancy of polyurethane elastomer, the limiting oxygen index (LOI) of the elastomer was elevated from 23% to 30%, and reaches V-0 rating in the UL-94 vertical burning test. The enhancement of flame retardancy is attributed to the introduction of VDP units, which not only generate PO· and PO∙ that can capture active free radicals during combustion, but also releases non-flammable gases to improve the flame-retardant effect.
View Article and Find Full Text PDFAs a natural renewable biomacromolecule, lignin has some inherently interesting properties such as fluorescence, antioxidation, and antibacterial performance. However, the unsatisfactory fluorescence and biological activities have greatly limited their value-added and large-scale applications. In this work, lignin nanoparticles (LNPs) grafted with vitamin B hybrid nanoparticles (LEVs) were obtained by using ethylenediamine and different contents of vitamin B through a simple hydrothermal method.
View Article and Find Full Text PDFThe combination of crystallization, transparency, and strength is still a challenge for broadening the application of polylactic acid (PLA) films, while it is also difficult to balance. In this work, the long aliphatic chains of octadecylamine (ODA) were grafted onto the surface of cellulose nanocrystal (CNC) by tannic acid oxidation self-polymerization and Michael addition/Schiff base reaction between polytannic acid and ODA. Furthermore, the ODA grafted CNC (g-CNC) was used as green reinforcement for the PLA matrix and a series of PLA/g-CNC nanocomposite films were prepared by the casting method.
View Article and Find Full Text PDFThe wide application of fully biodegradable polylactic acid/polybutylene terephthalate (PLA/PBAT) blends in environmentally friendly packaging were limited because of poor compatibility. Normal compatibilizers suffer from poor thermal stability and non-biodegradability. In this work, epoxy copolymer (MDOG) with different molecular structures were made of 2-methylene-1, 3-dioxoheptane, and glycidyl methacrylate as raw materials by free radical copolymerization.
View Article and Find Full Text PDFPoor compatibility limits the wide application of biodegradable poly (lactic acid)/poly (butylene adipate-terephthalate) (PLA/PBAT) blends in packaging industry. How to prepare compatibilizers with high efficiency and low cost by simple methods is a challenge. In this work, methyl methacrylate-co-glycidyl methacrylate (MG) copolymer with different epoxy group content are synthesized as reactive compatibilizers to resolve this issue.
View Article and Find Full Text PDFThe application of poly(lactic acid) (PLA) is limited by its low crystallization rate. Conventional methods to increase crystallization rate usually result in a significant loss of transparency. In this work, a bundled bis-amide organic compound N'-(3-(hydrazinyloxy)benzoyl)-1-naphthohydrazide (HBNA) was used as a nucleator to prepare PLA/HBNA blends with enhanced crystallization, heat resistance and transparency.
View Article and Find Full Text PDFPolyhydroxyalkanoates (PHA) is a biodegradable polyester, and its application range is limited by the poor flame retardancy and low modulus. Bentonite (BNT) as a green inorganic filler can improve the modulus and flame retardancy of PHA to a certain extent. An in situ polymerization method was designed to intercalate P-N-containing hyperbranched macromolecules (HBM) among BNT layers (HBM-B) and to improve the flame retardancy while improving the dispersion of BNT in the PHA matrix.
View Article and Find Full Text PDFMacromol Rapid Commun
March 2023
Polymer melt strength (MS) is strongly correlated with its molecular structure, while their relationship is not very clear yet. In this work, designable long-chain branched polylactide (LCB-PLA) is prepared in situ by using a tailor-made (methyl methacrylate)-co-(glycidyl methacrylate) copolymer (MG) with accurate number of reactive sites. A new concept of branching density (φ) in the LCB-PLA system is defined to quantitively study their relationship.
View Article and Find Full Text PDFSlow crystallization rates and poor storage stability of mechanical properties limit the widespread use of biosynthesized poly(hydroxyalkanoate)s (PHA). Hydrazide compounds (HC) with a formula of CHCONHNHCO(CH)CONHNHCOCH (n = 4 and 8) were used as PHA nucleating agents to improve the crystallization and mechanical properties. The effects of HC structure and self-assembly on the crystallization kinetics and nucleation efficiency of PHA were systematically investigated.
View Article and Find Full Text PDFPolyhydroxyalkanoates (PHAs), produced by the microbial fermentation, is a promising green polymer and has attracted much attention due to its excellent biocompatibility, complete biodegradability, and non-cytotoxicity. The physical properties of PHAs are closely related to their chemical and crystalline structure. Therefore, deep understanding and regulating the structure and crystallization of PHAs are the key factors to improve the performance of PHAs.
View Article and Find Full Text PDFVanillin, as a lignin-derived mono-aromatic compound, has attracted increasing attention due to its special role as an intermediate for the synthesis of different biobased polymers. Herein, intrinsically flame-retardant and thermal-conductive vanillin-based epoxy/graphene aerogel (GA) composites were designed. First, a bifunctional phenol intermediate (DN-bp) was synthesized by coupling vanillin with 4, 4'-diaminodiphenylmethane and DOPO, and the epoxy monomer (MEP) was obtained by the epoxidation reaction with DN-bp and epichlorohydrin.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
October 2021
In this study, Ag nanoparticles were firstly reduced on the surface of lignin nanoparticles (LNP) by direct reaction of silver nitrate without the use of a catalyst. Thermogravimetric analysis, Zeta potential and transmission electron microscopy measurements were performed to give evidence of the effectiveness of the reaction. After that, glutaraldehyde crosslinked PVA hydrogels, were produced by addition of unmodified LNP and Ag loaded LNP (LNP) in presence of cellulose nanocrystals (CNC).
View Article and Find Full Text PDFThe poor mechanical properties induced by unsatisfactory crystallization ability limit the widespread use of biosynthesized poly (3-hydroxybutyrate-co-3-hydroxyhexanate) (PHBH). In this work, poly (3-hydroxybutyrate) (PHB) with a high melting point was first used as a homogeneous nucleating agent to increase the crystallization rate of PHBH by a self-nucleation method with a wider processing temperature window and crystallization kinetics and storage stability of mechanical properties of the PHBH/PHB mixtures were systematically investigated. By controlling the processing temperature and PHB content, the crystal nucleus density and crystallization rate of PHBH could be greatly increased while secondary crystallization was inhibited.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2020
The durable application of polylactide (PLA) under atmospheric conditions is restricted by its poor ultraviolet (UV) stability. To improve the UV stability of polymers, titanium dioxide (TiO) is often used as a UV light capture agent. However, TiO is also a photocatalytic agent, with detrimental effects on the polymer properties.
View Article and Find Full Text PDFShear-induced crystallization plays a crucial role in the manufacturing process of polymers. In this work, crystallization kinetics of biosynthesized polyhydroxyalkanoates (PHA) under different shear conditions were systematically investigated by rheometers. First, rheological properties of PHA melts were performed at different temperature to obtain mastercurves via the time-temperature superposition principle at 170 °C as a reference temperature.
View Article and Find Full Text PDFInt J Biol Macromol
January 2018
The effects of six nucleating agents (NAs), i.e., orotic acid (OA), potassium salt of 3,5-bis(methoxycarbonyl)benzenesulfonate (LAK-301), substituted-aryl phosphate salts (TMP-5), talc (TALC), N',N'-dibenzoyladipohydrazide (TMC-306) and N,N-(ethane-1,2-diyl)bis(N-phenyloxalamide) (OXA), on the crystallization behavior of poly(lactic acid) (PLA) were compared by DSC.
View Article and Find Full Text PDFCarbohydr Polym
October 2017
The interfacial adhesion between polyhydroxyalkanoates (PHAs) and native starch is poor. To improve the interfacial adhesion, PHAs were in-situ grafted onto starch using dicumyl peroxide (DCP) as a free radical initiator. The grafting reaction was carefully characterized and confirmed by gel analysis and Fourier transform infrared spectroscopy (FT-IR).
View Article and Find Full Text PDFBacterially synthesized poly(hydroxyalkanoate)s (PHAs) suffers from low crystallization rate which is enhanced by using tailor-made oxalamide compounds as nucleators. The influence of nucleator configurations on the crystallization behaviour of the PHAs was investigated using differential scanning calorimetry (DSC), polarized optical microscopy (POM) and X-ray diffraction (XRD). The oxalamide compounds with ringy terminal structures (cyclohexyl and phenyl), notably the phenyl group, show higher nucleation efficiency and a better compatibility in the PHAs matrix, while the linear terminal structure (n-hexane) has poor nucleation effect.
View Article and Find Full Text PDFIn this work we report the in situ preparation of fully biobased stereocomplex poly(lactide) (SC-PLA) nanocomposites grafted onto nanocrystalline cellulose (NCC). The stereocomplexation rate by compounding high-molar-mass poly(D-lactide) (PDLA) with comb-like NCC grafted poly(L-lactide) is rather high in comparison with mixtures of PDLA and PLLA. The rapid stereocomplexation was evidenced by a high stereocomplexation temperature (Tc-sc = 145 °C) and a high SC crystallinity (Xc-sc = 38%) upon fast cooling (50 °C/min) from the melt (250 °C for 2 min), which are higher than currently reported values.
View Article and Find Full Text PDFObjective: To investigate the methods of reduction and stable fixation for the treatment of calcaneus fracture involving posterior subtalar articular facet.
Methods: From September 2004 to September 2008, 31 cases(38 feet) of calcaneus fracture involving posterior subtalar articular facet were treated with open reduction and plate fixation through L incision. There were 24 males and 7 females, with an average age of 39.