Publications by authors named "Pengwu Huang"

Understanding the spatiotemporal processes governing Cd behavior at the soil-solution-root interface is crucial for developing effective remediation strategies. This study examined the processes of chemical remediation in Cd-contaminated paddy soil using rhizotrons over the entire rice growth period. One-dimensional profile sampling with a 10 cm resolution revealed that during the initial flooding, paddy soil was strongly stimulated, followed by stabilization of porewater properties.

View Article and Find Full Text PDF

Soil acidification improvement in the main grain production regions of southern China is an important issue to enhance the quality of cultivated land and promote grain yield. In order to explore the effects of oyster shell powder and lime on acidity and availability and inorganic forms of phosphorus in acidic paddy soil, a pot experiment was performed using oyster shell powder and lime amendments with dosages of 0.05%, 0.

View Article and Find Full Text PDF

Clay minerals are widely used to treat sewage containing heavy metals such as zinc and cadmium. In this study, the chemical reactivity of natural serpentine was signally improved through mechanochemical activation, achieving the efficient separation of Zn(Ⅱ) and Cd(Ⅱ) ions in a mixed solution. The activated serpentine would release a large amount of Mg and OH and thereby selectively precipitate Zn(Ⅱ) ions as an uncommon metamorphic zinc mineral, bechererite, in the presence of SO.

View Article and Find Full Text PDF

Copper removal from aqueous solution is necessary from the stances of both environmental protection and copper resource recycling. It is important to develop a new chemical precipitation method suitable for removing copper particularly at low concentration as the case of waste mine water, with regards to the various problems related to the current precipitation methods by using strong alkalis or soluble sulfides. In this research, we studied a possible chemical precipitation of copper ions at concentration around 60 mg/L or lower by cogrinding copper sulfate in water with calcium carbonate (CaCO) using wet stirred ball milling.

View Article and Find Full Text PDF