The interference of complex environments on object detection tasks dramatically limits the application of object detection algorithms. Improving the detection accuracy of the object detection algorithms is able to effectively enhance the stability and reliability of the object detection algorithm-based tasks in complex environments. In order to ameliorate the detection accuracy of object detection algorithms under various complex environment transformations, this work proposes the Siamese Attention YOLO (SAYOLO) object detection algorithm based on ingenious siamese attention structure.
View Article and Find Full Text PDFBioengineering (Basel)
November 2022
Interstitial flow plays a significant role in vascular system development, mainly including angiogenesis and vasculogenesis. However, compared to angiogenesis, the effect of interstitial flow on vasculogenesis is less explored. Current in vitro models for investigating the effect of interstitial flow on vasculogenesis heavily rely on microfluidic chips, which require microfluidic expertise and facilities, and may not be accessible to biological labs.
View Article and Find Full Text PDFThe human placenta serves as a multifunctional organ to maintain the proper development of a fetus. However, our knowledge of the human placenta is limited due to the lack of appropriate experimental models. In this work, we created an placental trophoblast-like model via self-organization of human induced pluripotent stem cells (hiPSCs) in a perfused 3D culture macrofluidic device.
View Article and Find Full Text PDFType 2 diabetes mellitus (T2DM) is a systematic multi-organ metabolic disease, which is characterized by the dynamic interplay among different organs. The increasing incidence of T2DM reflects an urgent need for the development of in vitro human-relevant models for disease study and drug therapy. Here, a new microfluidic multi-organoid system is developed that recapitulates the human liver-pancreatic islet axis in normal and disease states.
View Article and Find Full Text PDFDiagnostics (Basel)
November 2021
Breast cancer is one of the most commonly diagnosed malignancies and the leading cause of cancer death in women worldwide. Although many factors associated with breast cancer have been identified, the definite etiology of breast cancer is still unclear. In addition, early diagnosis of breast cancer remains challenging.
View Article and Find Full Text PDFMicromachines (Basel)
September 2021
Exosomes are membrane-bound nanovesicles secreted by most types of cells, which contain a series of biologically important molecules, such as miRNAs, proteins, and lipids, etc. Emerging evidence show that exosomes can affect the physiological status of cells and are involved in various pathological processes. However, due to their small size and density close to body fluids, it is challenging to separate exosomes from a small volume of biological samples in a simple manner.
View Article and Find Full Text PDFACS Biomater Sci Eng
October 2020
Nonalcoholic fatty liver disease (NAFLD) is a common metabolic and progressive disease, which has emerged as a major cause of chronic liver disease worldwide. It is characterized by the process ranging from simple steatosis to nonalcoholic steatohepatitis. However, a deep understanding of NAFLD progression remains challenging due to the lack of proper human disease models.
View Article and Find Full Text PDFSci Bull (Beijing)
April 2021
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global pandemic. Clinical evidence suggests that the intestine is another high-risk organ for SARS-CoV-2 infection besides the lungs. However, a model that can accurately reflect the response of the human intestine to the virus is still lacking.
View Article and Find Full Text PDFThe pharmacokinetic (PK) properties of drug, which include drug absorption and excretion, play an important role in determining the in vivo pharmaceutical activity. However, current in vitro systems that model PK profiles are often limited by the in vivo-like concentration profile of a drug. Herein, we present a perfused and multi-layered microfluidic chip system to model the PK profile of anti-cancer drug 5-FU in vitro.
View Article and Find Full Text PDFHuman pluripotent stem cell (hPSC)-derived islet cells provide promising resources for diabetes studies, cell replacement treatment and drug screening. Recently, hPSC-derived organoids have represented a new class of in vitro organ models for disease modeling and regenerative medicine. However, rebuilding biomimetic human islet organoids from hPSCs remains challenging.
View Article and Find Full Text PDFLiver organoids derived from human pluripotent stem cells (PSCs) represent a new type of in vitro liver model for understanding organ development, disease mechanism and drug testing. However, engineering liver organoids with favorable functions in a controlled cellular microenvironment remains challenging. In this work, we present a new strategy for engineering liver organoids derived from human induced PSCs (hiPSCs) in a 3D perfusable chip system by combining stem cell biology with microengineering technology.
View Article and Find Full Text PDF