Publications by authors named "Pengsheng Wen"

Developing high-precision models of the nuclear force and propagating the associated uncertainties in quantum many-body calculations of nuclei and nuclear matter remain key challenges for ab initio nuclear theory. In this Letter, we demonstrate that generative machine learning models can construct novel instances of the nucleon-nucleon interaction when trained on existing potentials from the literature. In particular, we train the generative model on nucleon-nucleon potentials derived at second and third order in chiral effective field theory and at three different choices of the resolution scale.

View Article and Find Full Text PDF

Normalizing flows are a class of machine learning models used to construct a complex distribution through a bijective mapping of a simple base distribution. We demonstrate that normalizing flows are particularly well suited as a Monte Carlo integration framework for quantum many-body calculations that require the repeated evaluation of high-dimensional integrals across smoothly varying integrands and integration regions. As an example, we consider the finite-temperature nuclear equation of state.

View Article and Find Full Text PDF