Publications by authors named "Pengqian Luan"

Enzyme-photo-coupled catalysis produces fine chemicals by combining the high selectivity of an enzyme with the green energy input of sunlight. Operating a large-scale system, however, remains challenging because of the significant loss of enzyme activity caused by continuous illumination and the difficulty in utilizing solar energy with high efficiency at large scale. We present a large-scale enzyme-photo-coupled catalysis system based on gas-sprayed microdroplets.

View Article and Find Full Text PDF

Background: The combination of metal-catalyzed reactions and enzyme catalysis has been an essential tool for synthesizing chiral pharmaceutical intermediates in the field of drug synthesis. Metal catalysis commonly enables the highly efficient synthesis of molecular scaffolds under harsh organic conditions, whereas enzymes usually catalyze reactions in mild aqueous medium to obtain high selectivity. Since the incompatibility between metal and enzyme catalysis, there are limitations on the compatibility of reaction conditions that must be overcome.

View Article and Find Full Text PDF

Due to its environmental friendliness and biodegradable ability, the enzymatic decolorization of azo dyes is the best option. However, the free enzyme suffers from various limitations, including poor stability, no repeatable use, and a high expense, which is the key drawback for its practical use. In this analysis, the laccase enzyme was immobilized in mesoporous silica coated magnetic multiwalled carbon nanotubes (FeO-MWCNTs@SiO) by a glutaraldehyde cross-linker to create an easily separable and stable enzyme.

View Article and Find Full Text PDF