β-cyclodextrin (β-CD) is an important cyclic oligosaccharide, which is widely applicated in foods, environmental protection, and cosmetics, primarily prepared from enzymatic synthesis in traditional industry. However, several challenges persist, including cumbersome processes and difficulties in achieving continuous fermentation and catalysis. This research introduced a biofilm-based immobilized fermentation, integrating with enzyme catalysis system of surface display in Bacillus subtilis.
View Article and Find Full Text PDFThis study presented an immobilized fermentation process of engineered Komagataella phaffii with improved biofilm-forming abilities for continuous xylanase production and provided the first insights into the molecular basis of biofilm-based immobilized fermentation of K. phaffii. Overexpression of PAS_chr2-2_0178 and PAS_FragB_0067 in K.
View Article and Find Full Text PDFPolyamides' properties are greatly influenced by the polymerization process and the type of feedstock used. The solid forms of nylon salts play a significant role in determining the final characteristics of the material. This study focuses on the long-chain bio-nylon 512.
View Article and Find Full Text PDFSeawater electrolysis using renewable electricity offers an attractive route to sustainable hydrogen production, but the sluggish electrode kinetics and poor durability are two major challenges. We report a molybdenum nitride (MoN) catalyst for the hydrogen evolution reaction with activity comparable to commercial platinum on carbon (Pt/C) catalyst in natural seawater. The catalyst operates more than 1000 hours of continuous testing at 100 mA cm without degradation, whereas massive precipitate (mainly magnesium hydroxide) forms on the Pt/C counterpart after 36 hours of operation at 10 mA cm.
View Article and Find Full Text PDFContinuous fermentation processes increasingly emphasized cell recycling, utilization, and renewal. In this study, to improve the sustainability of the immobilized Saccharomyces cerevisiae, the cells were recovered on the surface of the glucose-responsive supports through manipulating the competitive interactions of phenylboric acid groups between glycoproteins on the cells and glucose. Through a dopamine (DA)-assisted deposition approach, 3-acrylamidophenylboronic acid (APBA) was integrated to design the saccharide-sensitive cotton fibers (APBA@PDA-CF).
View Article and Find Full Text PDFInt J Biol Macromol
October 2024
When it comes to enzyme stability and their application in organic solvents, enzyme biocatalysis has emerged as a popular substitute for conventional chemical processes. However, the demand for enzymes exhibiting improved stability remains a persistent challenge. Organic solvents can significantly impacts enzyme properties, thereby limiting their practical application.
View Article and Find Full Text PDFLiquid-liquid separation, commonly referred to as oiling-out, frequently can occurs during crystallization, especially the anti-solvent crystallization process of phosphoryl compounds, and poses potential hurdle for high-quality product. Efficiently regulating oiling-out during crystallization remains a significant challenge. Among various techniques, ultrasound emerges as a green and effective approach to enhance the crystallization process.
View Article and Find Full Text PDFReduction of carbon dioxide (CO) by renewable electricity to produce multicarbon chemicals, such as ethylene (CH), continues to be a challenge because of insufficient Faradaic efficiency, low production rates, and complex mechanistic pathways. Here, we report that the rate-determining steps (RDS) on common copper (Cu) surfaces diverge in CO electroreduction, leading to distinct catalytic performances. Through a combination of experimental and computational studies, we reveal that C─C bond-making is the RDS on Cu(100), whereas the protonation of *CO with adsorbed water becomes rate-limiting on Cu(111) with a higher energy barrier.
View Article and Find Full Text PDFBackground: Androgenetic alopecia (AGA) is a prevalent type of hair loss that impacts individuals of both genders. Platelet-rich plasma (PRP) and minoxidil have been employed as therapeutic interventions for AGA, yet the efficacy of their concurrent use remains ambiguous.
Objective: To perform a comprehensive review and meta-analysis aimed at evaluating the effectiveness of platelet-rich plasma (PRP) in combination with minoxidil for the treatment of androgenetic alopecia (AGA).
Anion-exchange membrane fuel cells provide the possibility to use platinum group metal-free catalysts, but the anodic hydrogen oxidation reaction (HOR) suffers from sluggish kinetics and its source is still debated. Here, over nickel-tungsten (Ni-W) alloy catalysts, we show that the Ni : W ratio greatly governs the HOR performance in alkaline electrolyte. Experimental and theoretical studies unravel that alloying with W can tune the unpaired electrons in Ni, tailoring the potential of zero charge and the catalytic surface to favor hydroxyl adsorption (OH).
View Article and Find Full Text PDFNylon 514 is one of the new long-chain bio-based nylon materials; its raw material, 1,5-pentanediamine (PDA), is prepared by biological techniques, using biomass as the raw material. The high-performance monomer of nylon 514, 1,5-pentanediamine-tetradecanedioate (PDA-TDA) salt, was obtained through efficient crystallization methods. Here, two crystal forms of PDA-TDA, anhydrous and dihydrate, were identified and studied in this paper.
View Article and Find Full Text PDFCarbon-carbon coupling electrochemistry on a conventional copper (Cu) catalyst still undergoes low selectivity among many different multicarbon (C) chemicals, posing a grand challenge to achieve a single C product. Here, we demonstrate a laser irradiation synthesis of a gerhardtite mineral, Cu(OH)NO, as a catalyst precursor to make a Cu catalyst with abundant stacking faults under reducing conditions. Such structural perturbation modulates electronic microenvironments of Cu, leading to improved d-electron back-donation to the antibonding orbital of *CO intermediates and thus strengthening *CO adsorption.
View Article and Find Full Text PDFNon-human primates (NHPs) are increasingly used in preclinical trials to test the safety and efficacy of biotechnology therapies. Nonetheless, given the ethical issues and costs associated with this model, it would be highly advantageous to use NHP cellular models in clinical studies. However, developing and maintaining the naïve state of primate pluripotent stem cells (PSCs) remains difficult as does in vivo detection of PSCs, thus limiting biotechnology application in the cynomolgus monkey.
View Article and Find Full Text PDFConverting hydrogen chemical energy into electrical energy by fuel cells offers high efficiencies and environmental advantages, but ultrapure hydrogen (over 99.97%) is required; otherwise, the electrode catalysts, typically platinum on carbon (Pt/C), will be poisoned by impurity gases such as ammonia (NH). Here we demonstrate remarkable NH resistivity over a nickel-molybdenum alloy (MoNi) modulated by chromium (Cr) dopants.
View Article and Find Full Text PDFCytidine is an important kind of nucleoside that can be applied to drug development and food industry. Cytidine sulfate is one of its popular forms, which is promising as a medicinal intermediate, especially in antiviral and antitumor drugs. Product refining is the key point of industrial development, and crystallization is a significant way of refining.
View Article and Find Full Text PDFThe electrocatalytic carbon dioxide reduction reaction (CORR) presents a sustainable route to convert renewable electricity to value-added fuels and feedstocks in the form of chemical energy. However, the selectivity and rate of conversion of CO to desirable carbon-based products, especially multicarbon products, remain below the requirement for its implementation at the commercial scale, which primarily originates from inadequate reactants and intermediates near catalytic surfaces during the CORR. The enrichment of reactants and intermediates provides one of the coping guidelines to improve CORR performance by accelerating the reaction rate and improving product selectivity.
View Article and Find Full Text PDFGalactooligosaccharides (GOS) are one of the most important functional oligosaccharide prebiotics. The surface display of enzymes was considered one of the most excellent strategies to obtain these products. However, a rough industrial environment would affect the biocatalytic process.
View Article and Find Full Text PDFAlkaline fuel cells can permit the adoption of platinum group metal-free (PGM-free) catalysts and cheap bipolar plates, thus further lowering the cost. With the exploration of PGM-free hydrogen oxidation reaction (HOR) catalysts, nickel-based compounds have been considered as the most promising HOR catalysts in alkali. Here we report an interfacial engineering through the formation of nickel-vanadium oxide (Ni/V O ) heterostructures to activate Ni for efficient HOR catalysis in alkali.
View Article and Find Full Text PDFThe compound 1,5-pentanediamine (PDA) is prepared by biological methods using biomass as raw material. The salt of 1,5-pentanediamine oxalate (PDA-OXA) was used directly as the monomer for the preparation of a new bio-based nylon 52 material. High-performance polymer materials require initial high-quality monomers, and crystallization is an essential approach to preparing such a monomer.
View Article and Find Full Text PDFThis work is to design and optimize the 4column-simulated moving bed unit to separate and recovery alkali and lignin from black liquor. Since both alkali lignin and NaOH are the main products, we proposed the 'extended separation volume' methodology to construct a four-dimensional separation region (Q×Q×Q×Q) to design the operating conditions. Special attention was paid to investigate the influence of flow-rates in each zone on the performance parameters of these two products.
View Article and Find Full Text PDF