To deploy Electroencephalogram (EEG) based Mental Workload Recognition (MWR) systems in the real world, it is crucial to develop general models that can be applied across subjects. Previous studies have utilized domain adaptation to mitigate inter-subject discrepancies in EEG data distributions. However, they have focused on reducing global domain discrepancy, while neglecting local workload-categorical domain divergence.
View Article and Find Full Text PDFThe advance in neuroscience and computer technology over the past decades have made brain-computer interface (BCI) a most promising area of neurorehabilitation and neurophysiology research. Limb motion decoding has gradually become a hot topic in the field of BCI. Decoding neural activity related to limb movement trajectory is considered to be of great help to the development of assistive and rehabilitation strategies for motor-impaired users.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
May 2023
Brain computer interface (BCI) is a system that directly uses brain neural activities to communicate with the outside world. Recently, the decoding of the human upper limb based on electroencephalogram (EEG) signals has become an important research branch of BCI. Even though existing research models are capable of decoding upper limb trajectories, the performance needs to be improved to make them more practical for real-world applications.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
February 2023
Electroencephalography (EEG) signals classification is essential for the brain-computer interface (BCI). Recently, energy-efficient spiking neural networks (SNNs) have shown great potential in EEG analysis due to their ability to capture the complex dynamic properties of biological neurons while also processing stimulus information through precisely timed spike trains. However, most existing methods do not effectively mine the specific spatial topology of EEG channels and temporal dependencies of the encoded EEG spikes.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
January 2023
Sleep staging is a vital process for evaluating sleep quality and diagnosing sleep-related diseases. Most of the existing automatic sleep staging methods focus on time-domain information and often ignore the transformation relationship between sleep stages. To deal with the above problems, we propose a Temporal-Spectral fused and Attention-based deep neural Network model (TSA-Net) for automatic sleep staging, using a single-channel electroencephalogram (EEG) signal.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
March 2022
Cognitive workload recognition is pivotal to maintain the operator's health and prevent accidents in the human-robot interaction condition. So far, the focus of workload research is mostly restricted to a single task, yet cross-task cognitive workload recognition has remained a challenge. Furthermore, when extending to a new workload condition, the discrepancy of electroencephalogram (EEG) signals across various cognitive tasks limits the generalization of the existed model.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
January 2022
Limb motion decoding is an important part of brain-computer interface (BCI) research. Among the limb motion, sign language not only contains rich semantic information and abundant maneuverable actions but also provides different executable commands. However, many researchers focus on decoding the gross motor skills, such as the decoding of ordinary motor imagery or simple upper limb movements.
View Article and Find Full Text PDFEmotional singing can affect vocal performance and the audience's engagement. Chinese universities use traditional training techniques for teaching theoretical and applied knowledge. Self-imagination is the predominant training method for emotional singing.
View Article and Find Full Text PDF