The removal of pharmaceutical residues from water resources using bio-based materials is very important for human safety and health. Bio-based graphene oxide/chitosan (GO/CS) aerogel microspheres were fabricated with emulsification and cross-linking, followed by freeze drying, and were used for the adsorption of levofloxacin (LOF). The obtained GO/CS aerogel microspheres were characterized with scanning electron microscopy (SEM), Fourier-transform infrared (FTIR), and thermogravimetry (TG).
View Article and Find Full Text PDFDue to the specific recognition performance, imprinted polymers have been widely investigated and applied in the field of separation and detection. Based on the introduction of the imprinting principles, the classification of imprinted polymers (bulk imprinting, surface imprinting, and epitope imprinting) are summarized according to their structure first. Secondly, the preparation methods of imprinted polymers are summarized in detail, including traditional thermal polymerization, novel radiation polymerization, and green polymerization.
View Article and Find Full Text PDFThe incorporation of graphene oxide (GO) into a polymeric drug carrier can not only enhance the loading efficiency but also reduce the initial burst and consequently improve the controllability of drug release. Firstly, 5-fluorouracil (5-Fu)-loaded hydroxypropyl cellulose/chitosan (HPC/CS@5-Fu) and GO/HPC/CS@5-Fu aerogels were successfully fabricated through chemical cross-linking with glutaraldehyde. Then, the obtained aerogels were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FITR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetry (TG), and the effect of HPC and GO content on the drug loading (DL) and encapsulation efficiency (EE) for the two aerogels were investigated, respectively.
View Article and Find Full Text PDFHydraulic fracturing is an important technology for the exploitation of unconventional oil or gas reservoirs. In order to increase the production of oil or gas, ultra-lightweight proppants with a high compressive strength are highly desirable in hydraulic fracture systems. In this work, a new type of ultra-lightweight proppant, poly(styrene--methyl methacrylate)/fly ash (poly(St--MMA)/FA) composites with a high compressive strength were prepared via in situ suspension polymerization.
View Article and Find Full Text PDF