Recent advances in photonic optimization have enabled calculation of performance bounds for a wide range of electromagnetic objectives, albeit restricted to single-material systems. Motivated by growing theoretical interest and fabrication advances, we present a framework to bound the performance of photonic heterostructures and apply it to investigate maximum absorption characteristics of multilayer films and compact, free-form multi-material scatterers. Limits predict trends seen in topology-optimized geometries - often coming within factors of two of specific designs - and may be utilized in conjunction with inverse designs to predict when heterostructures are expected to outperform their optimal single-material counterparts.
View Article and Find Full Text PDFRecent advances in fundamental performance limits for power quantities based on Lagrange duality are proving to be a powerful theoretical tool for understanding electromagnetic wave phenomena. To date, however, in any approach seeking to enforce a high degree of physical reality, the linearity of the wave equation plays a critical role. In this manuscript, we generalize the current quadratically constrained quadratic program framework for evaluating linear photonics limits to incorporate nonlinear processes under the undepleted pump approximation.
View Article and Find Full Text PDFThe electromagnetic local density of states (LDOS) is crucial to many aspects of photonics engineering, from enhancing emission of photon sources to radiative heat transfer and photovoltaics. We present a framework for evaluating upper bounds on the LDOS in structured media that can handle arbitrary bandwidths and accounts for critical wave scattering effects. The bounds are solely determined by the bandwidth, material susceptibility, and device footprint, with no assumptions on geometry.
View Article and Find Full Text PDF