In the past few years, graphene and its derivative, graphene oxide (GO), have been extensively studied for their applications in biotechnology. In our previous work, we reported certain PEGylated GOs (GO-PEGs) can selectively promote trypsin activity and enhance its thermostability. To further explore this, here we synthesized a series of GO-PEGs with varying PEGylation degrees.
View Article and Find Full Text PDFRational control of molecular ordering on surfaces and interfaces is vital in supramolecular chemistry and nanoscience. Here, a systematic scanning tunneling microscopy (STM) study for controlling the self-assembly behavior of alkoxylated benzene (B-OC(n)) molecules on a HOPG surface is presented. Three different phases have been observed and, of great importance, they can transform to each other by modifying the solute concentration.
View Article and Find Full Text PDFJ Recept Signal Transduct Res
April 2015
Respiratory complex I, the biggest enzyme of respiratory chain, plays a key role in energy production by the mitochondrial respiratory chain and has been implicated in many human neurodegenerative diseases. Recently, the crystal structure of respiratory complex I is reported. We perform 50 ns molecular dynamics simulations on the membrane domain of respiratory complex I under two hypothetical states (oxidized state and reduced state).
View Article and Find Full Text PDFHydrogels are generally thought to be formed by nano- to micrometre-scale fibres or polymer chains, either physically branched or entangled with each other to trap water. Although there are also anisotropic hydrogels with apparently ordered structures, they are essentially polymer fibre/discrete polymer chains-based network without exception. Here we present a type of polymer-free anisotropic lamellar hydrogels composed of 100-nm-thick water layers sandwiched by two bilayer membranes of a self-assembled nonionic surfactant, hexadecylglyceryl maleate.
View Article and Find Full Text PDFIn the presence or absence of water, a Schiff-base compound, 4-amino-3-(2-(2-hydroxybenzylidene)hydrazinyl)-1H-1,2,4-triazole-5(4H)-thione (HATT), forms different crystalline states (HATT, HATT·2H2O, and a lamellar structure, m-HATT·nH2O), which show different luminescence emission properties. Herein, we investigate the emission of HATT and the role of water molecules. A water molecule, which acts as both a hydrogen-bond acceptor and -donor, enlarges the distance between adjacent HATT molecules and hinders non-radiative decay pathways.
View Article and Find Full Text PDF