Immune checkpoint inhibitor (ICI)-derived evolution offers a versatile means of developing novel immunotherapies that targets programmed death-ligand 1 (PD-L1)/programmed death-1 (PD-1) axis. However, one major challenge is T cell exhaustion, which contributes to low response rates in "cold" tumors. Herein, we introduce a fluorinated assembly system of LFNPs/siTOX complexes consisting of fluorinated EGCG (FEGCG), fluorinated aminolauric acid (LA), and fluorinated polyethylene glycol (PEG) to efficiently deliver small interfering RNA anti-TOX (thymus high mobility group box protein, TOX) for synergistic tumor cells and exhausted T cells regulation.
View Article and Find Full Text PDFClassical chemotherapeutic drugs may cause immunogenic cell death (ICD), followed by activating CD8 T cells to promote cell-mediated antitumor immune responses. However, CD8 T cells become exhausted due to tumor antigens' continuous stimulation, creating a major obstacle to effectively suppressing tumor growth and metastasis. Here, we develop an approach of chemo-gene combinational nanomedicine to bridge and reprogram chemotherapy and immunotherapy.
View Article and Find Full Text PDFChemoimmunotherapy has shown great potential to activate an immune response, but the immunosuppressive microenvironment associated with T cell exhaustion remains a challenge in cancer therapy. The proper immune-modulatory strategy to provoke a robust immune response is to simultaneously regulate T-cell exhaustion and infiltration. Here, a new kind of carrier-free nanoparticle is developed to simultaneously deliver chemotherapeutic drug (doxorubicin, DOX), cytolytic peptide (melittin, MPI), and anti-TOX small interfering RNA (thymocyte selection-associated high mobility group box protein, TOX) using a fluorinated prodrug strategy.
View Article and Find Full Text PDFNano-based immunotherapy of therapeutic biomolecules is attractive but tremendously hampered by the poor delivery efficiency. This study reports a novel delivery system of fluorinated-coordinative-epigallocatechin gallate (EGCG), referring as FEGCG/Zn, through the integration of fluorination and zinc ions (Zn ) into EGCG. The robust therapeutics of FEGCG/Zn are measured in terms of the regulating effect on programmed cell death ligand 1 (PD-L1), the effective delivery of diverse biomolecules, and the hitchhiking ability using living cells.
View Article and Find Full Text PDFHepatic stellate cell (HSC)-targeted delivery is an attractive strategy for liver fibrosis therapy, but the efficacy is hampered by poor delivery of nanomaterials and complicated microenvironments of the fibrotic liver. Here, we report a versatile CXCR4-inhibiting nanocomplex composed of polymeric CXCR4 antagonism (PAMD, PA), CLD (clodronate) and siPAI-1 (siRNA of plasminogen activator inhibitor-1) that surmounts multiple barriers to improve the outcome by co-regulating Kupffer cells (KCs), extracellular matrix (ECM) and HSCs. Upon encountering biological barriers, the nanocomplex exerted penetrating and targeting functions, efficiently overcoming KCs capture, ECM trapping and nonspecific recognition of HSCs, finally contributing to the enhanced HSCs uptake.
View Article and Find Full Text PDFJ Nanobiotechnology
July 2021
Background: RBC membrane derived nanoparticles (NPs) represent an emerging platform with prolonged circulation capacity for the delivery of active substances. For functionalize derived RBCs NPs, various strategies, such as biomimetic rebuilding of RBCs, chemical modification or inserting ligands, have been carried out to improve their performance. However, one potential adverse effect for these methods is the structural failure of membrane proteins, consequently affecting its original immune escape function.
View Article and Find Full Text PDFThe treatment options of liver fibrosis remain limited except for liver transplantation due to the complexity and slow development in its progression. Besides, liver fibrosis recurrence and intervention time have not been reported as significant indicators to affect the anti-fibrotic efficacy of tested drugs/strategies. Herein, a novel fluoropolymer is developed to achieve high drug loading of sorafenib and efficient delivery of miR155 inhibitor (anti-miR155) for dual-targeting of hepatic stellate cells (HSCs) and kupffer cells (KCs), and we report a detailed plan on the design of treatment regimen to reveal the relationship between chemogene therapy, intervention time and fibrosis recurrence.
View Article and Find Full Text PDFPolyethylenimine (PEI) is a promising delivery vector of nucleic acids, but cytotoxicity and only moderate transfection efficacy with small RNAs limit its applications. Here we hypothesized that hydrophobization of PEI by combined modification with perfluorinated moieties (F) and cholesterol (Ch) will help in addressing both the cytotoxicity and siRNA delivery efficacy. To test the hypothesis, we synthesized a series of copolymers (F-PEI-Ch) by modifying PEI by reaction with heptafluorobutyric anhydride and cholesteryl chloroformate.
View Article and Find Full Text PDFLiver fibrosis is a chronic liver disease associated with an excessive accumulation of extracellualr matrix (ECM) proteins which ultimately lead to cirrohosis and hepatocellular carcinoma. Liver fibrosis therapies that use combination approaches with the ability to affect multiple disease pathways have proven higher efficacies. This study aimed at optimizing and characterizing the co-encapsulation of pirfenidone (PF) and AMD3100 (AMD) into CXCR4-targeted combination liposomes (CTC liposome) for CXCR4 targeting, and the inhibition of major molecular culprits ie α-SMA, CXCR4, TGFβ, and P-p38 involved in liver fibrosis in-vitro.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2019
Inefficient transfection of biocompatible low-molecular-weight (LMW) polycations, such as 1.8k polyethylenimine (PEI), is a major challenge for successful nucleic acid delivery. Current strategies to improve transfection efficiency are bottlenecked by maintaining the balance between efficient gene encapsulation and on-demand cargo release.
View Article and Find Full Text PDFChemokine receptor CXC receptor 4 (CXCR4) plays a crucial role in cell invasion and metastasis of multiple types of cancer. Dual-function polymeric CXCR4 antagonists based on cyclam-modified poly(ethylenimine) (C-PEI) have been shown to have potential as nucleic acid delivery vectors and antimetastatic therapeutics in recent studies. How cholesterol modification of C-PEI affects the ability of the polycation to deliver siRNA and inhibit CXCR4 is tested here.
View Article and Find Full Text PDFMetastatic breast cancer is a major cause of cancer-related female mortality worldwide. The signal transducer and activator of transcription 3 (STAT3) and the chemokine receptor CXCR4 are involved in the metastatic spread of breast cancer. The goal of this study was to develop nanomedicine treatment based on combined inhibition of STAT3 and CXCR4.
View Article and Find Full Text PDFThis report describes the development of polyplexes based on CXCR4-inhibiting poly(ethylenimine) derivative (PEI-C) for pulmonary delivery of siRNA to silence plasminogen activator inhibitor-1 (siPAI-1) as a new combination treatment of pulmonary fibrosis (PF). Safety and delivery efficacy of the PEI-C/siPAI-1 polyplexes was investigated in vitro in primary lung fibroblasts isolated from mice with bleomycin-induced PF. Biodistribution analysis following intratracheal administration of fluorescently labeled polyplexes showed prolonged retention in the lungs.
View Article and Find Full Text PDFThe use of small interfering RNA (siRNA) in cancer treatment has been limited by the lack of effective systemic delivery methods. Although synthetic polycations have been widely explored in siRNA delivery, polycation/siRNA polyplexes often suffer from insufficient stability in vivo. Here, rationally designed siRNA delivery systems that meet the requirements for systemic siRNA delivery to distant tumors are reported.
View Article and Find Full Text PDFLiposomes have successfully been used for decades to encapsulate and protect drugs that are prone to deactivation in the body. The present study aimed to demonstrate the use of liposomes to encapsulate cordycepin, an adenosine analog that quickly loses its activity in vivo. The cordycepin-loaded liposomes were prepared by the ammonium sulfate gradient approach, and its in vitro and in vivo antitumour activities were evaluated using BEL-7402 cells and hepatocellular carcinoma H22 transplanted tumors, respectively.
View Article and Find Full Text PDF