Bacterial infections pose significant challenges in wound healing and are a serious threat to human health. Hydrogels have emerged as an ideal wound dressing due to their three-dimensional network, which facilitates exudate absorption and maintains a moist environment conducive to healing. Herein, we developed integrated hydrogels composed of poly(thioctic acid) (PTA), polydopamine (PDA), and curcumin (Cur).
View Article and Find Full Text PDFAntibody-coated nanoparticles have been reported to have the extremely low delivery efficiency in solid tumors in preclinical trials. Though aptamers were considered to be superior over antibodies in cancer theranostics, whether PEGylated aptamer nanoparticles are better than antibody nanoparticles in improving delivery specificity and penetration efficiency of chemotherapeutics is still unknown. Here, we conjugate celastrol, a natural product with anti-tumor effect, onto PEGylated EpCAM aptamer or antibody dendrimers to obtain two nanoconjugates, and for the first time, conduct a comprehensive study to compare their performance in delivery specificity, intratumoral penetration ability and therapeutic outcomes.
View Article and Find Full Text PDFBacteria-infected wound healing is a complex and chronic process that poses a great threat to human health. A thermo-sensitive hydrogel that undergoes a sol-gel transition at body temperature is an attractive wound dressing for healing acceleration and infection prevention. In this paper, we present a thermo-sensitive and reactive oxygen species (ROS)-scavenging hydrogel based on polydopamine modified poly(ε-caprolactone--glycolide)--poly(ethylene glycol)--poly(ε-caprolactone--glycolide) (PDA/P2) triblock copolymer.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
March 2020
Therapeutic peptide, NuBCP-9 (N9) as a Bcl-2 functional converter, has been demonstrated to have the remarkable anticancer efficiency in Bcl-2-abundant cancer. However, it faced technical challenges in clinical use, such as the low bioavailability, the easily-destroyed bio-stability, and the insusceptibility to cellular interior. With the potential of mesoporous silica nanoparticles (MSNs) as the promising delivery vehicle of therapeutic macromolecules, we developed a kind of MSNs with the surface coating of folic acid (FA) for cancer cell targeting and with the macropore loading of N9 peptide for cancer therapy.
View Article and Find Full Text PDFMultidrug resistance (MDR), as a major obstacle in cancer therapy, has resulted in over 90% of cancer chemotherapeutic failure. Mesoporous silica nanospheres (MSNs) have been demonstrated to be tuned with large pore sizes, mediating the MDR-reversal effects. However, the study that surface functionality of the large pore sized-MSNs affects the MDR-overcoming effects hasn't been extensively studied.
View Article and Find Full Text PDFThe abundance of B cell lymphoma gene 2 (Bcl-2) is closely correlated with the resistance of cancer cells to chemotherapeutic agents, and a peptide derived from orphan nuclear receptor Nur77 can convert Bcl-2 from a protector to a killer of cancer cells. However, successful application of the Bcl-2-converting peptide to treat drug-resistant cancer cells depends on an efficient delivery carrier. Mesoporous silica nanoparticles (MSNs) have been extensively studied as promising candidates for small molecule drug delivery.
View Article and Find Full Text PDF