To prevent the residual sulfur dioxide in Chinese herbal medicines (CHM) caused by sulfur fumigation, which may lead to severe health issues, there is an urgent need for a rapid and quantitative detection technique. Sodium borohydride was used as a reducing agent to convert sulfur dioxide into hydrogen sulfide, which was then detected using lead acetate test strip. An accurate testing apparatus was designed, consisting of reaction bottle cap, reaction bottle, lead acetate test strip, and sulfur dioxide detector.
View Article and Find Full Text PDFBackground: Protein Corona (PC) of nanoparticles is a structure which composed of one or more layers of proteins adsorbed on the surface of nanomaterials, and the formation of PC is a universal process of spontaneous randomness. We take advantage of the formation principle of the PC, developed a simple and efficient method for label protein to nanoparticles.
Methods: The artificialed protein corona (APC) on the surface of nanoparticles was synthesized via the artificialed methods of desolvation aggregation and crosslinking with control.
The Cry1Ab toxin is usually expressed in genetically modified crops in order to control chewing pests. Although the gold immunochromatography assay (GICA) based on the double-antibody sandwich method has been developed to detect this toxin, its detection sensitivity needs improvement. In this study, Cry1Ab-51 antibodies were immobilized orientationally in a simple and effective way on colloidal gold nanoparticles (CGNPs) using the affinity of staphylococcal protein A (SPA) towards the fragment crystallizable (FC) fragment of mouse immunoglobulin G (IgG).
View Article and Find Full Text PDFInfluenza virus cause seasonal influenza epidemic and seriously sporadic influenza pandemic outbreaks. Hemagglutinin (HA) is an important target in the therapeutic treatment and diagnostic detection of the influenza virus. Variation in the sialic acid receptor binding site leads to strain-specific binding and results in different binding modes to the host receptors.
View Article and Find Full Text PDFInfluenza is the most common infectious disease and is caused by influenza A virus (IAV) infection. Hemagglutinin (HA) is an important viral protein of influenza A and is a major component of current IAV vaccines. The side effects associated with IAV vaccination are well studied; however, the HA‑induced immunopathological changes have remained largely elusive.
View Article and Find Full Text PDFTo characterize the antigenic epitopes of the hemagglutinin (HA) protein of H1N1 influenza virus, a panel consisting of 84 clones of murine monoclonal antibodies (mAbs) were generated using the HA proteins from the 2009 pandemic H1N1 vaccine lysate and the seasonal influenza H1N1(A1) vaccines. Thirty-three (39%) of the 84 mAbs were found to be strain-specific, and 6 (7%) of the 84 mAbs were subtype-specific. Twenty (24%) of the 84 mAbs recognized the common HA epitopes shared by 2009 pandemic H1N1, seasonal A1 (H1N1), and A3 (H3N2) influenza viruses.
View Article and Find Full Text PDFInfluenza A virus infection is a persistent threat to public health worldwide due to hemagglutinin (HA) variation. Current vaccines against influenza A virus provide immunity to viral isolates similar to vaccine strains. Antibodies against common epitopes provide immunity to diverse influenza virus strains and protect against future pandemic influenza.
View Article and Find Full Text PDF