Rheumatoid arthritis (RA) is a kind of inflammation homeostasis disorder that dysfunctions the joints. Clinically, medications against RA focus simply on mitigating the focal inflammation, without considering pro-osteogenesis re-modeling of the bone microenvironment. In the present work, 2D layered calcium disilicide nanoparticles (CSNs) are fabricated by facile aqueous exfoliation.
View Article and Find Full Text PDFLiving therapeutics is an emerging antitumor modality by living microorganisms capable of selective tropism and effective therapeutics. Nevertheless, primitive microbes could only present limited therapeutic functionalities against tumors. Hybridization of the microbes with multifunctional nanocatalysts is of great significance to achieve enhanced tumor catalytic therapy.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2024
Nanocatalytic tumor therapy based on Fenton nanocatalysts has attracted considerable attention because of its therapeutic specificity, enhanced outcomes, and high biocompatibility. Nevertheless, the rate-determining step in Fenton chemistry, which involves the transition of a high-valence metallic center (Fe ) to a Fenton-active low-valence metallic center (Fe ), has hindered advances in nanocatalyst-based therapeutics. In this study, we constructed mesoporous single iron atomic nanocatalysts (mSAFe NCs) by employing catechols from dopamine to coordinate and isolate single iron atoms.
View Article and Find Full Text PDFCancer cells predominantly adapt the frequent but less efficient glycolytic process to produce ATPs rather than the highly efficient oxidative phosphorylation pathway. Such a regulated metabolic pattern in cancer cells offers promising therapeutic opportunities to kill tumors by glucose depletion or glycolysis blockade. In addition, to guarantee tumor-specific therapeutic targets, effective tumor-homing, accumulation, and retention strategies toward tumor regions should be elaborately designed.
View Article and Find Full Text PDFThe bacterial pneumonia has been demonstrated to cause acute and severe pathological lung injury as well as the uncontrollable oxidative cytokine storms. The effective therapeutics against bacterial pneumonia demands highly efficient pathogen elimination, oxidative stress alleviation and anti-inflammation. Nevertheless, current therapeutics fail to achieve these goals by a single medicine with satisfactory performance.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) has attracted tremendous attention due to its advantages such as high safety and effectiveness compared to traditional radiotherapy and chemotherapy. However, the intratumoral hypoxic microenvironment will inevitably compromise the PDT effect of the highly oxygen-dependent type II photosensitizers, implicating the urgent demand for continuous intratumoral oxygenation. Herein, biocompatible photosynthetic cyanobacteria have been modified with inorganic two-dimensional black phosphorus nanosheets (BPNSs) to be a novel bioreactor termed as Cyan@BPNSs.
View Article and Find Full Text PDF