Publications by authors named "Pengfa Chang"

We proposed and verified a scheme of chaos synchronization for integrated five-section semiconductor lasers with matching parameters. The simulation results demonstrated that the integrated five-section semiconductor laser could generate a chaotic signal within a large parameter range of the driving currents of five sections. Subsequently, chaos synchronization between two integrated five-section semiconductor lasers with matched parameters was realized by using a common noise signal as a driver.

View Article and Find Full Text PDF

We experimentally demonstrate a photonic reservoir computing (RC) system using a passive silica microsphere cavity. The microsphere cavity exhibits a consistent nonlinear response to the non-return-to-zero signal and the multiple-level signal due to strong interference between numerous whispering gallery modes in the "over-coupling" state. Benefiting from the fact that the long photon lifetime inside the microsphere cavity provides a memory of past inputs, this photonic reservoir does not require a delayed feedback loop.

View Article and Find Full Text PDF

Semiconductor lasers with delayed optical feedback are a promising source of optical chaos for practical applications, owing to simple configurations that are easy to integrate and synchronize. However, for traditional semiconductor lasers, the chaos bandwidth is limited by the relaxation frequency to several gigahertz. Here, we propose and experimentally demonstrate that a short-resonant-cavity distributed-feedback (SC-DFB) laser can generate broadband chaos only with simple feedback from an external mirror.

View Article and Find Full Text PDF

The feasibility of the quasicritical coupling based on the high order scalar modes in tapered fiber was presented and discussed in detail theoretically. As its applications, the bandwidth evolution of the coupling process both in the Through port and the Drop port were also included in the calculations and demonstrated in the experiment. As a result, tunable bandwidth filters with stable insertion loss were realized by changing the gap between the few-mode tapered fiber and microcavity working under a state of quasicritical coupling.

View Article and Find Full Text PDF

We present an all-fiber frequency shifter (AFFS) consisting of a fiber Bragg grating (FBG) modulated via an acoustic flexural wave for optical heterodyne measurement. The AFFS can efficiently generate the frequency-shifted signal due to the resonance peak with a high-reflection efficiency and being completely separated from the reflection spectrum of the original FBG, simultaneously. The experimental result shows that the minimal measurable vibration amplitude and the resolution of the all-fiber optical heterodyne measurement setup constructed with the AFFS are 0.

View Article and Find Full Text PDF

We demonstrate an all-fiber single-longitudinal-mode (SLM) narrow-linewidth ring laser stabilized by a microsphere resonator and fiber Bragg gratings (FBGs) with a large continuous wavelength tuning range from 1540 nm to 1570 nm. In the experiment, stable lasing with a linewidth smaller than 5 kHz was obtained. The laser wavelength was linearly and continuously tuned in the range of 0.

View Article and Find Full Text PDF

An acousto-optic tunable bandpass filter was proposed and fabricated based on acoustic-flexural-wave-induced single-mode fiber birefringence via coupling the core mode to a single-cladding vector mode. In the experiment, the resonant wavelength and insertion loss could be electrically tuned with a span of nearly 100 nm and a lowest insertion loss of -1.7  dB.

View Article and Find Full Text PDF

In this article, we reported self-pumped stimulated Brillouin scattering (SBS)-induced fast light in a micro-resonator. The optically induced thermal effect in the micro-resonator will lead to a shift of the dispersion spectrum and make the SBS gain occurred in the anomalous dispersion regime. The group delay could be experimentally optimized from -91.

View Article and Find Full Text PDF

A fast tunable dual-wavelength laser based on in-fiber acousto-optic Mach-Zehnder interferometer (AO-MZI) with new fabrication process is proposed. Not only could the center wavelength of the output laser be optimized with enhanced tuning range about 30 nm by tuning the polarization and the driving frequency of the radio frequency (RF) signal accordingly, but also the spectral spacing between the two output wavelengths could be tuned from ~0 nm to 2.65 nm by controlling the power of the RF signal.

View Article and Find Full Text PDF

An all-fiber tunable laser was fabricated based on an acousto-optic tunable filter and a tapered fiber. The structure was of a high signal-to-noise ratio, therefore, no extra gain flattening was needed in the laser. In the experiment, the wavelength of the laser could be tuned from 1532.

View Article and Find Full Text PDF

Based on the conversion between the fundamental mode (LP01) and the higher-order mode (LP11) in a tapered fiber via a whispering gallery mode resonator, an add/drop filter was proposed and demonstrated experimentally, in which the resonator only interacted with one tapered fiber, rather than two tapered fibers as in conventional configurations. The filter gains advantages of easy alignment and low scattering loss over the other filters based on tapered fiber and resonator, and will be useful in application.

View Article and Find Full Text PDF

An in-fiber Mach-Zehnder interferometer was proposed and fabricated, which was based on a sandwich-like etched single mode fiber driven by only one acoustic transducer. It succeeded the feature of fast tuning and would not introduce frequency shift in the transmission spectrum. Based on it, a fast tuning dual-wavelength laser with a two-wavelength spacing around 3.

View Article and Find Full Text PDF