J Chem Theory Comput
August 2024
Frozen density embedding (FDE) with freeze-thaw cycles is a formally exact embedding scheme. In practice, this method is limited to systems with small density overlaps when approximate nonadditive kinetic energy functionals are used. It has been shown that the use of approximate nonadditive kinetic energy functionals can be avoided when external orthogonality (EO) is enforced, and FDE can then generate exact results even for strongly overlapping subsystems.
View Article and Find Full Text PDFBacterial culture of M. tuberculosis (MTB), the causative agent of tuberculosis (TB), from clinical specimens is the gold standard for laboratory diagnosis of TB, but is slow and culture-negative TB cases are common. Alternative immune-based and molecular approaches have been developed, but cannot discriminate between active TB (ATB) and latent TB (LTBI).
View Article and Find Full Text PDFThere is a growing consensus on soil conservation by mechanics of plant root system. In order to further study how root system exerts its mechanical properties during soil reinforcing process and which morphological indicator is suitable for reflecting pullout resistance, vertical pullout test (VPT) and 45° oblique pullout test (OPT) were performed on alfalfa ( L.) roots in the loess area.
View Article and Find Full Text PDFJ Chem Theory Comput
December 2019
We report a polarizable subsystem density functional theory to describe electronic properties of molecules embedded on a metal cluster. Interaction between the molecule and metal cluster is described using frozen density embedding (FDE). Substituting the nonadditive kinetic potential (NAKP) by approximate functionals is circumvented by enforcing external orthogonality (EO) through a projection operator.
View Article and Find Full Text PDFVibrational modes of a single molecule can be visualized by tip-enhanced Raman spectroscopy with atomic resolution. However, the exact vibrations associated with these Raman scattering images are still in debate due to the lack of theoretical interpretation. In this work, we systematically study the Raman scattering images of a single Co(II)-tetraphenylporphyrin molecule.
View Article and Find Full Text PDFTip-enhanced Raman spectroscopy (TERS) exhibits new selection rule and sub-nanometer spatial resolution, which is attributed to the plasmonic near-field confinement. Despite recent advances in simulations of TERS spectra under highly confined fields, a simply physical mechanism has remained elusive. In this work we show that single-molecule TERS images can be explained by local sub-molecular density changes induced by the confined near-field during the Raman process.
View Article and Find Full Text PDFField-emitted, low-energy electrons from the conducting tip of an atomic force microscope were adopted for nanolithography on calixarene ultrathin films coated on silicon wafers. A structural evolution from protrusion to depression down to a 30 nm spatial resolution was reproducibly obtained by tuning the sample voltage and exposure current in the lithography process. Close analyses of the profiles showed that the nanostructures formed by a single exposure with a high current are almost identical to those created by cumulative exposure with a lower current but an equal number of injected electrons.
View Article and Find Full Text PDFAtomically terminated and nanoscopically smooth silver tips effectively focus light on the angstrom scale, allowing tip-enhanced Raman spectromicroscopy (TER-sm) with single molecule sensitivity and submolecular spatial resolution. Through measurements carried out on cobalt-tetraphenylporphyrin (CoTPP) adsorbed on Au(111), we highlight peculiarities of vibrational spectromicroscopy with light confined on the angstrom scale. Field-gradient-driven spectra, orientational fingerprinting, and sculpting of local fields by atomic morphology of the junction are elucidated through measurements that range from 2D arrays at room temperature to single molecule manipulations at 5 K.
View Article and Find Full Text PDFAdvances in tip-enhanced Raman spectroscopy (TERS) have demonstrated ultrahigh spatial resolution so that the vibrational modes of individual molecules can be visualized. The spatial resolution of TERS is determined by the confinement of the plasmon-induced field in the junction; however, the conditions necessary for achieving the high spatial confinement required for imaging individual molecules are not fully understood. Here, we present a systematic theoretical study of TERS imaging of single molecules, using a hybrid atomistic electrodynamics-quantum mechanical method.
View Article and Find Full Text PDFStaphylococcal enterotoxins (SEs) produced by Staphylococcus aureus have increasingly given rise to human health and food safety. Genetically engineered small molecular antibody is a useful tool in immuno-detection and treatment for clinical illness caused by SEs. In this study, we constructed the V(L)-V(H) tail-parallel genetically engineered antibody against SEs by using the repertoire of rearranged germ-line immunoglobulin variable region genes.
View Article and Find Full Text PDFHigh-conductance, Ca(2+)-activated and voltage-gated (BK) channels set neuronal firing. They are almost universally activated by alcohol, leading to reduced neuronal excitability and neuropeptide release and to motor intoxication. However, several BK channels are inhibited by alcohol, and most other voltage-gated K(+) channels are refractory to drug action.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2004
Binge drinking is associated with increased risk for cerebrovascular spasm and stroke. Acute exposure to ethanol at concentrations obtained during binge drinking constricts cerebral arteries in several species, including humans, but the mechanisms underlying this action are largely unknown. In a rodent model, we used fluorescence microscopy, patch-clamp electrophysiology, and pharmacological studies in intact cerebral arteries to pinpoint the molecular effectors of ethanol cerebrovascular constriction.
View Article and Find Full Text PDFActa Pharmacol Sin
December 2003
Aim: To study the expression of collapsing response mediated protein-4 (CRMP-4) and nestin in the ischemic adult rat brain following transient brain ischemia.
Methods: Brain ischemia was induced by transient left middle cerebral artery occlusion (MCAO) for 60 min in adult rats. The expression of CRMP-4, nestin and bromodeoxyuridine (BrdU) was analyzed by immunohistochemical method.
Background: Ethanol at clinically relevant concentrations increases BKCa channel activity in dorsal root ganglia neurons, GH3 cells, and neurohypophysial terminals, leading to decreases in cell excitability and peptide release. In contrast, ethanol inhibits BKCa channels from aortic myocytes, which likely contributes to alcohol-induced aortic constriction. The mechanisms that determine differential BKCa channel responses to ethanol are unknown.
View Article and Find Full Text PDFImmunohistochemistry and double immunofluorescent labeling techniques combined with confocal laser scanning microscope analysis were used to investigate the characteristic spatial induction profile of nestin following a transient middle cerebral artery occlusion in adult rat brain. The results showed that nestin was induced in ischemic core at 1 day after reperfusion. In addition to ischemic core, the expression of nestin increased in peri-ischemic I, II and III regions at 3 days and 1 week, then it decreased and narrowed along the rim of ischemic core 2 weeks after reperfusion.
View Article and Find Full Text PDF