The cGAS-cGAMP-STING pathway is essential for immune defense against pathogens. Upon binding DNA, cGAS synthesizes cGAMP, which activates STING, leading to potent innate immune effector responses. However, lacking specific features to distinguish between self and nonself DNA, cGAS-STING immunity requires precise regulation to prevent aberrant activation.
View Article and Find Full Text PDFCyclic GMP-AMP synthase (cGAS) senses aberrant DNA during infection, cancer and inflammatory disease, and initiates potent innate immune responses through the synthesis of 2'3'-cyclic GMP-AMP (cGAMP). The indiscriminate activity of cGAS towards DNA demands tight regulatory mechanisms that are necessary to maintain cell and tissue homeostasis under normal conditions. Inside the cell nucleus, anchoring to nucleosomes and competition with chromatin architectural proteins jointly prohibit cGAS activation by genomic DNA.
View Article and Find Full Text PDFNucleic acids derived from pathogens induce potent innate immune responses. Cyclic GMP-AMP synthase (cGAS) is a double-stranded DNA sensor that catalyses the synthesis of the cyclic dinucleotide cyclic GMP-AMP, which mediates the induction of type I interferons through the STING-TBK1-IRF3 signalling axis. cGAS was previously thought to not react with self DNA owing to its cytosolic localization; however, recent studies have shown that cGAS is localized mostly in the nucleus and has low activity as a result of tight nuclear tethering.
View Article and Find Full Text PDFThe innate immune system is the first line of defense against bacterial and viral infections. The recognition of pathogen-associated molecular patterns by the RIG-I-like receptors, TLRs, and cGAS leads to the induction of IFN-I by activating the transcription factor IRF-3. Although the mechanism of IRF-3 activation has been extensively studied, the structural basis of IRF-3 activation upon phosphorylation is not fully understood.
View Article and Find Full Text PDFNucleic acids from bacteria or viruses induce potent immune responses in infected cells. The detection of pathogen-derived nucleic acids is a central strategy by which the host senses infection and initiates protective immune responses. Cyclic GMP-AMP synthase (cGAS) is a double-stranded DNA sensor.
View Article and Find Full Text PDFIntracellular bacterial pathogens secrete a repertoire of effector proteins into host cells that are required to hijack cellular pathways and cause disease. Despite decades of research, the molecular functions of most bacterial effectors remain unclear. To address this gap, we generated quantitative genetic interaction profiles between 36 validated and putative effectors from three evolutionarily divergent human bacterial pathogens and 4,190 yeast deletion strains.
View Article and Find Full Text PDFArch Biochem Biophys
February 2017
FBXL5 is a subunit of the SCF ubiquitin ligase complex that targets the proteasomal degradation of iron regulatory protein IRP2, which is an important regulator in iron metabolism. The degradation of FBXL5 itself is regulated in an iron- and oxygen-responsive manner through its diiron center containing Hr-like domain. Although the crystal structure of the Hr-like domain of FBXL5 and its degradation based on iron/oxygen sensing has been reported, the redox sensing molecular mechanism is still not clear.
View Article and Find Full Text PDFImmunotherapy is one of the key strategies for cancer treatment. The cGAS-cGAMP-STING-IRF3 pathway of cytosolic DNA sensing plays a pivotal role in antiviral defense. We report that the STING activator cGAMP possesses significant antitumor activity in mice by triggering the STING-dependent pathway directly.
View Article and Find Full Text PDF