Corrosion is a prevalent issue in industrial production, directly impacting the production process and causing severe damages. To mitigate this problem, corrosion inhibitors are highly desired. Herein, a novel type of nano corrosion inhibitor, referred to as PTCNT, was synthesized through an oxidative copolymerization method utilizing aniline, ammonium persulfate (APS), and tannic acid (TA)-modified multiwalled carbon nanotubes (MWCNTs).
View Article and Find Full Text PDFIn this study, an ultra-high-precision pneumatic force servo system (UPFSS) is proposed. On the one hand, a novel air-floating pneumatic cylinder (AFPC) with an air-floating piston capable of independent air supply and exhaust is developed for this system, and its special flow channel design allows the air-floating piston to be suspended in the cylinder without being constrained by the pressure in the chambers. The friction force of the AFPC is less than 0.
View Article and Find Full Text PDFNowadays, flexible multifunctional composites are attracting much attention and are practically being used in various emerging electronic devices. However, most composites suffer from the disadvantages of high loadings of conductive fillers, complicated preparation processes, and low energy conversion efficiency. In this article, Caffeic acid-modified multiwalled carbon nanotubes (C-MWCNTs)/poly(3,4-ethylene dioxythiophene):polystyrene sulfonic acid (PEDOT:PSS)/polyimide (PI) composite films (CPFs) were prepared using a simple layer-by-layer deposition method.
View Article and Find Full Text PDFWith the popularization of 5G technology and the development of science and technology, flexible and transparent conductive films (TCF) are increasingly used in the preparation of optoelectronic devices such as electromagnetic shielding devices, transparent flexible heaters, and solar cells. Silver nanowires (AgNW) are considered the best material for replacing indium tin oxide to prepare TCFs due to their excellent comprehensive properties. However, the loose overlap between AgNWs is a significant reason for the high resistance.
View Article and Find Full Text PDFTraditional conductive fabrics are prepared by the synthesis of conductive polymers and the coating modification of metals or carbon black conductive materials. However, the conductive fabrics cause a significant decline in performance after washing or mechanical wear, which limits their application. Moreover, the single function of the traditional conductive fabric is also the reason that limits its wide application.
View Article and Find Full Text PDFTransparent conductive films with high stability were prepared by embedding silver nanowires in colorless polyimide and adding a protective layer of exfoliated graphene. The films exhibit great light transmission and conductivity with a sheet resistance of 22 Ω sqat transmittance of 83%. Due to its special embedded structure, the conductive layer can withstand several peeling experiments without falling off.
View Article and Find Full Text PDFAn amine and bis(phenylsulfonyl)methane co-catalyzed hydrogen-deuterium exchange (HDE) method a Michael-retro-Michael pathway for site-selective introduction of deuterium at the α-position of enals using DO as a deuterium source has been achieved. The mild, operationally simple protocol allows for high yielding and high level deuterium incorporation (up to 99%) for structurally diverse aromatic-derived enals and dienals.
View Article and Find Full Text PDFA simple and efficient protocol was developed for the preparation of challenging α-aryl primary amides. This metal-free coupling process was triggered by TfOH-promoted electrophilic activation of α-silyl nitrile to generate keteniminium ion species, followed by reaction with aryl sulfoxide through [3,3]-sigmatrophic rearrangement to provide the target product. To the best of our knowledge, α-silyl nitrile has been rarely used as a pro-electrophilic reagent.
View Article and Find Full Text PDFMulti-frequency multi-bit programmable amplitude modulation (AM) of spoof surface plasmon polaritons (SPPs) is realized at millimeter wave frequencies with interdigital split-ring resonators (SRRs) and In-Ga-Zn-O (IGZO) Schottky diodes. Periodic SRRs on a metal line guide both SRR mode and spoof SPP mode, the former of which rejects the spoof SPP propagation at the SRR resonant frequencies. To actively modulate the amplitude of spoof SPPs, IGZO Schottky diodes are fabricated in the SRR gaps, which continuously re-configure SRRs to metallic loops by applying bias.
View Article and Find Full Text PDFPlacenta-specific protein 1 (Plac1) has critical functions in multiple human malignancies, but its role in nasopharyngeal carcinoma (NPC) was unclear. Clinical samples of NPC and adjacent normal tissue were collected. Plac1 expressions in both tissues and cells were measured.
View Article and Find Full Text PDFThe recent surge in applications of deuterated pharmaceutical agents has created an urgent demand for synthetic methods that efficiently generate deuterated building blocks. Here we show that N-heterocyclic carbenes (NHC) promote a reversible hydrogen-deuterium exchange (HDE) reaction with simple aldehydes, which leads to a practical approach to synthetically valuable C-1 deuterated aldehydes. The reactivity of the well-established NHC catalysed formation of Breslow intermediates from aldehydes is reengineered to overcome the overwhelmingly kinetically favorable, irreversible benzoin condensation reaction and achieve the critical reversibility to drive the formation of desired deuterated products when an excess of DO is employed.
View Article and Find Full Text PDFAn efficient aminocatalytic enantioselective Michael addition of readily available cyclic hemiacetals to nitroolefins has been developed. The strategy serves as a powerful approach to synthetically valuable chiral 3-substituted tetrahydrofurans (THFs) and tetrahydropyrans (THPs). The synthetic utilities of the versatile Michael adducts also have been demonstrated in the synthesis of 2,3-disubstituted cyclic ethers, α-substituted lactones and venlafaxine analogues.
View Article and Find Full Text PDFVarious computational models have gained immense attention by analyzing the dynamic characteristics of proteins. Several models have achieved recognition by fulfilling either theoretical or experimental predictions. Nonetheless, each method possesses limitations, mostly in computational outlay and physical reality.
View Article and Find Full Text PDFEver since its inception, a popular DNA motif called the cross tile has been recognized to self-assemble into addressable 2D templates consisting of periodic square cavities. Although this may be conceptually correct, in reality certain types of cross tiles can only form planar lattices if adjacent tiles are designed to bind in a corrugated manner, in the absence of which they roll up to form 3D nanotube structures. Here we present a theoretical study on why uncorrugated cross tiles self-assemble into counterintuitive 3D nanotube structures and not planar 2D lattices.
View Article and Find Full Text PDFA theoretical model which takes into account the structural distortion of double-crossover DNA tiles has been studied to investigate its effect on lattice formation sizes. It has been found that a single vector appropriately describes the curvature of the tiles, of which a higher magnitude hinders lattice growth. In conjunction with these calculations, normal mode analysis reveals that tiles with relative higher frequencies have an analogous effect.
View Article and Find Full Text PDF