Objective: Although histone deacetylase (HDAC) inhibition has been shown to protect against gentamicin (GM)-induced hearing loss in vitro, its protective effect has not been proven in vivo. In the present study, the aim was to investigate the protective effect of sodium butyrate (NaB), a specific HDAC inhibitor, on GM-induced ototoxicity in vivo.
Methods: Forty 8-week-old albino guinea pigs were divided into two experimental groups.
Spiral ganglion neuron (SGN) injury is a generally accepted precursor of auditory neuropathy. Receptor-interacting protein 3 (RIP3) has been reported as an important necroptosis pathway mediator that can be blocked by necrostatin-1 (Nec-1). In our study, we sought to identify whether necroptosis participated in SGN injury.
View Article and Find Full Text PDFNeural stem cell (NSC) transplantation into the cochlea has been tested as a treatment for spiral ganglion neuron (SGN) degenerative disease and injury in various animal models. A recent study has shown evidence of functional recovery after transplantation of the stem cells into a degenerated-SGN model. Chemokine stromal cell-derived factor-1 (SDF-1, or known as CXC chemokine ligand-12, CXCL-12) signaling through CXCR4 has previously been identified as a key step in the homing of the stem cells within the injury areas; meanwhile, studies have revealed that the SDF-1/CXCR4 axis is also involved in axon guidance and pathfinding.
View Article and Find Full Text PDFAlthough neural stem cell (NSC) transplantation is widely expected to become a therapy for nervous system degenerative diseases and injuries, the low neuronal differentiation rate of NSCs transplanted into the inner ear is a major obstacle for the successful treatment of spiral ganglion neuron (SGN) degeneration. In this study, we validated whether the local microenvironment influences the neuronal differentiation of transplanted NSCs in the inner ear. Using a rat SGN degeneration model, we demonstrated that transplanted NSCs were more likely to differentiate into microtubule-associated protein 2 (MAP2)-positive neurons in SGN-degenerated cochleae than in control cochleae.
View Article and Find Full Text PDFSpiral ganglion neurons (SGNs) are poorly regenerated in the mammalian inner ear. Because of this, stem cell transplantation has been used to replace injured SGNs, and several studies have addressed this approach. However, the difficulty of delivering stem cells into the cochlea and encouraging their migration to Rosenthal's canal (RC), where the SGNs are located, severely restricts this therapeutic strategy.
View Article and Find Full Text PDFNeural stem cell (NSC) transplantation into the cochlea is widely used for the treatment of spiral ganglion neuron (SGN) degenerative disease and injury in the animal models, but the migration of the transplanted NSCs to the injury region is difficult and the mechanism is still unclear. In this study, we aimed to validate whether the SGN-degenerated cochlear microenvironment plays a role in the NSC migration and investigated whether stromal cell-derived factor-1 (SDF-1) was involved in the NSCs migration. Using a rat SGN degeneration model, we demonstrated that the transplanted NSCs are more likely to migrate to the injury region during the early post-injury (EPI) than the late post-injury (LPI) stage and the control cochlea.
View Article and Find Full Text PDFBackground: A reduction in cochlear blood flow plays an essential role in noise-induced hearing loss (NIHL). The timely regulation of cochlear perfusion determines the progression and prognosis of NIHL. Hydrogen sulfide (H(2)S) has attracted increasing interest as a vasodilator in cardiovascular systems.
View Article and Find Full Text PDF