Publications by authors named "Peng-Zhou Kong"

Background: Forkhead box F2 (FOXF2) is relatively limited to the adult lung, but its contribution to non-small cell lung cancer (NSCLC) prognosis is unclear.

Results: FOXF2 mRNA levels in NSCLC were lower than that in paired normal lung tissues (P = 0.012).

View Article and Find Full Text PDF

Forkhead box (FOX) F2 and FOXC2 belong to the FOX transcription factor superfamily. FOXC2 is recognized as an inducer of epithelial-mesenchymal transition (EMT), and its overexpression promotes basal-like breast cancer (BLBC) metastasis. Our previous study demonstrated that FOXF2 functions as an EMT suppressor and that FOXF2 deficiency promotes BLBC metastasis.

View Article and Find Full Text PDF

FOXF2 (forkhead box F2) is a mesenchyme-specific transcription factor that plays a critical role in tissue homeostasis through the maintenance of epithelial polarity. In a previous study, we demonstrated that FOXF2 is specifically expressed in basal-like breast cancer (BLBC) cells and functions as an epithelial-mesenchymal transition suppressor. FOXF2 deficiency enhances the metastatic ability of BLBC cells through activation of the epithelial-mesenchymal transition program, but reduces cell proliferation.

View Article and Find Full Text PDF

Bone metastasis affects more than 70% of advanced breast cancer patients, but the molecular mechanisms of this process remain unclear. Here, we present clinical and experimental evidence to clarify the role of the integrin β-like 1 (ITGBL1) as a key contributor to bone metastasis of breast cancer. In an in vivo model system and in vitro experiments, ITGBL1 expression promoted formation of osteomimetic breast cancers, facilitating recruitment, residence, and growth of cancer cells in bone microenvironment along with osteoclast maturation there to form osteolytic lesions.

View Article and Find Full Text PDF

Introduction: Our previous clinical study demonstrated that the under-expression of FOXF2 is associated with early-onset metastasis and poor prognosis of patients with triple-negative breast cancer. In this study, we further characterized the role of FOXF2 in metastasis of basal-like breast cancer (BLBC) and underlying molecular mechanisms.

Methods: RT-qPCR, immunoblot, immunofluorescence and immunohistochemistry were performed to assess the expression of genes and proteins in cell lines and tissues.

View Article and Find Full Text PDF

The glutathione-S-transferase (GST) family contributes to the inactivation of various toxic compounds formed as secondary metabolites during oxidative stress. GSTP1 accounts for the majority of the GST family enzymatic activity, and the activity of GSTP1 enzyme can be altered by the presence of the Ile105Val polymorphism. In this study, we examined the polymorphic frequency of GSTP1 Ile105Val genotype in 920 breast cancer patients and 783 healthy controls in women of North China.

View Article and Find Full Text PDF

The transcription factor, FOXF2, plays an important role in tissue development, extracellular matrix synthesis, and epithelial-mesenchymal interactions, implying that it may be associated with the metastatic capabilities of cancer cells. However, the relationship between FOXF2 expression and breast cancer progression, metastasis, and prognosis, remains to be elucidated. In this study, FOXF2 mRNA levels in 305 primary breast cancer tissues were examined using RT-QPCR.

View Article and Find Full Text PDF