Publications by authors named "Peng-Yu Tang"

Approximately 10% of bone fractures do not heal satisfactorily, leading to significant clinical and socioeconomic implications. Recently, the role of macrophages in regulating bone marrow stem cell (BMSC) differentiation through the osteogenic pathway during fracture healing has attracted much attention. : The tibial monocortical defect model was employed to determine the critical role of macrophage scavenger receptor 1 (MSR1) during intramembranous ossification (IO) .

View Article and Find Full Text PDF

Approximately 10-15% of all bone fractures do not heal properly, causing patient morbidity and additional medical care expenses. Therefore, better mechanism-based fracture repair approaches are needed. In this study, a reduced number of osteoclasts (OCs) and autophagosomes/autolysosomes in OC can be observed in GPCR kinase 2-interacting protein 1 (GIT1) knockout (KO) mice on days 21 and 28 post-fracture, compared with GIT1 wild-type (GIT1 WT) mice.

View Article and Find Full Text PDF

Mitochondrial division inhibitor 1 (Mdivi-1) is a selective cell-permeable inhibitor of dynamin-related protein-1 (Drp1) and mitochondrial division. To investigate the effect of Mdivi-1 on cells treated with glutamate, cerebral cortex neurons isolated from neonatal rats were treated with 10 mM glutamate for 24 hours. Normal cultured cells and dimethyl sulfoxide-cultured cells were considered as controls.

View Article and Find Full Text PDF

GPCR kinase 2-interacting protein-1 (GIT1) is a scaffold protein that plays an important role in cell adaptation, proliferation, migration, and differentiation; however, the role of GIT1 in the regulation of neuronal death after spinal cord injury remains obscure. Here, we demonstrate that GIT1 deficiency remarkably increased neuronal apoptosis and enhanced JNK/p38 signaling, which resulted in stronger motor deficits by ischemia-reperfusion in vivo, consistent with the finding of oxygen-glucose deprivation/reoxygenation-induced neuronal injury in vitro. After treatment with JNK and p38 inhibitors, abnormally necroptotic cell death caused by GIT1 knockdown could be partially rescued, with the recovery of neuronal viability, which was still poorer than that in control neurons.

View Article and Find Full Text PDF

Phenotypic and functional property changes of bone marrow-derived immature dendritic cells (BM-imDCs) after porcine reproductive and respiratory syndrome virus (PRRSV) infection have been detailed in a previous report. A down-regulated expression of MHC I molecules along with an up-regulated expression of CD80/86 were observed in BM-imDCs after the exposure to PRRSV. In this study, we further investigate the expression of surface phenotypes of BM-imDCs in relation to their infection status.

View Article and Find Full Text PDF

Field observations have suggested that porcine reproductive and respiratory syndrome virus (PRRSV) predispose pigs to secondary infections. The interaction between PRRSV and the secondary invaders has not yet been well elucidated. In this study, we investigated the mRNA expression of Toll-like receptors (TLR) in lymphoid organs and cells, and cytokine secretions by alveolar macrophages (AMs) and peripheral blood mononuclear cells (PBMCs) in response to pathogen-associated molecular patterns (PAMPs) in PRRSV-challenged pigs.

View Article and Find Full Text PDF

It is well documented that there is a delay in the development of effective immunity to porcine reproductive and respiratory syndrome virus (PRRSV) in infected and vaccinated pigs. This suggests that PRRSV might possess some inherent properties to evade host defense mechanisms during the early stage of infection. Dendritic cells (DCs) play a crucial role in the activation and control of T-cells in response to viral antigens.

View Article and Find Full Text PDF