ACS Appl Mater Interfaces
October 2023
Two-dimensional metal-organic layer (MOL) nanosheets, as nonhomogeneous catalysts, show better optical activity in the field of photocatalysis due to their unique structural advantages. Current research focuses on how to modify the structure of 2D nanosheets by means of crystal engineering to modulate the intralayer electron transfer pathway and systematically investigate the impacts of size effect and electron transfer pathway on the energy utilization efficiency of crystalline materials. In the present work, a triple lophine-derived ligand was designed and prepared, which exhibits a large π-conjugation system and multiple D-A (D: donor, A: acceptor) electron transfer pathways.
View Article and Find Full Text PDFThe unique structural advantages give metal-organic frameworks (MOFs) a special use as host substrates to encapsulate organic dyes, which would result in specific host-guest composites for white-light phosphors. In this work, an anionic MOF exhibiting blue emission was constructed using bisquinoxaline derivatives as photoactive centers, which could effectively encapsulate rhodamine B (Rh B) and acriflavine (AF) to form an In-MOF ⊃ Rh B/AF composite. By simply adjusting the amount of Rh B and AF, the emitting color of the resulting composite could be easily adjusted.
View Article and Find Full Text PDFA catalyst-free multicomponent CDC reaction is rarely reported, especially for the intermolecular tandem CDC cyclization, which represents an important strategy for constructing cyclic compounds. Herein, a three-component tandem CDC cyclization by a Pummerer-type rearrangement to afford biologically relevant isoindolinones from aromatic acids, amides, and DMSO, is described. This intermolecular tandem reaction undergoes a C(sp(2) )-H/C(sp(3) )-H cross-dehydrogenative coupling, C-N bond formation, and intramolecular amidation.
View Article and Find Full Text PDF