We demonstrate that glutaric acid can be used to prepare nanorods of hydroxyapatite under hydrothermal condition at 100 degrees C with a Ca(2+):glutaric acid molar ratio of 1:4. Frequency-switched Lee-Goldburg irradiation is employed to obtain high-resolution (31)P{(1)H} correlation spectra of the reaction mixture at two different reaction periods, from which it is shown that octacalcium phosphate is the precursor phase of the final hydroxyapatite product. In addition, the spectra show that a substantial amount of water molecules is trapped between the glutaric acid and the hydroxyapatite surface, indicating that water molecules may play a prominent role in the noncovalent interaction of the glutaric acid and the HAp surface.
View Article and Find Full Text PDFStatherin is an active inhibitor of calcium phosphate precipitation in the oral cavity. For many studies of the interaction between statherin and hydroxyapatite (HAp), the samples are prepared by a direct mixing of statherin or its fragment with well-crystalline HAp crystals. In this work, the HAp sample is precipitated in the presence of peptide fragment derived from the N-terminal 15 amino acids of statherin (SN-15).
View Article and Find Full Text PDFWe demonstrate that the static powder pattern line shape of chemical shift anisotropy (CSA) can be obtained for unresolved carbonyl sites of polypeptides under magic-angle spinning. The CSA interaction is first recoupled at the carbonyl site. The phase factors associated with the CSA recoupling are then transferred to the adjacent alpha carbon by an isotropic polarization transfer based on scalar spin-spin coupling.
View Article and Find Full Text PDF