Publications by authors named "Peng-Hsun Chase Chen"

Acute myeloid leukemia (AML) is the second most prevalent and fatal form of leukemia. The growth of AML cells harboring oncogenic MLL rearrangements relies on the YEATS domain-containing protein ENL. Many small molecule inhibitors targeting ENL have been developed.

View Article and Find Full Text PDF

Epigenetic reader proteins interpret histone epigenetic marks to regulate gene expression. Given their vital roles and the link between their dysfunction and various diseases, these proteins present compelling targets for therapeutic interventions. Nevertheless, designing selective inhibitors for these proteins poses significant challenges, primarily due to their unique properties such as shallow binding sites and similarities with homologous proteins.

View Article and Find Full Text PDF

Using an amber suppression-based noncanonical amino acid (ncAA) mutagenesis approach, the chemical space in phage display can be significantly expanded for drug discovery. In this work, we demonstrate the development of a novel helper phage, CMa13ile40, for continuous enrichment of amber obligate phage clones and efficient production of ncAA-containing phages. CMa13ile40 was constructed by insertion of a Candidatus Methanomethylophilus alvus pyrrolysyl-tRNA synthetase/PylT gene cassette into a helper phage genome.

View Article and Find Full Text PDF

Main protease (M ) of SARS-CoV-2, the viral pathogen of COVID-19, is a crucial nonstructural protein that plays a vital role in the replication and pathogenesis of the virus. Its protease function relies on three active site pockets to recognize P1, P2, and P4 amino acid residues in a substrate and a catalytic cysteine residue for catalysis. By converting the P1 Cα atom in an M substrate to nitrogen, we showed that a large variety of azapeptide inhibitors with covalent warheads targeting the M catalytic cysteine could be easily synthesized.

View Article and Find Full Text PDF

SARS-CoV-2 is the coronavirus pathogen of the currently prevailing COVID-19 pandemic. It relies on its main protease (M ) for replication and pathogenesis. M is a demonstrated target for the development of antivirals for SARS-CoV-2.

View Article and Find Full Text PDF

Phage-assisted, active site-directed ligand evolution (PADLE) is a recently developed technique that uses an amber codon-encoded noncanonical amino acid (ncAA) as an anchor to direct phage-displayed peptides to a target for an enhanced ligand identification process. 2-Amino-8-oxodecanoic acid (Aoda) is a ketone-containing ncAA residue in the macrocyclic peptide natural product apicidin that is a pan-inhibitor of Zn -dependent histone deacetylases (HDACs). Its ketone serves as an anchoring point to coordinate the catalytic zinc ion in HDACs.

View Article and Find Full Text PDF

Due to the great potentials of cyclic peptides as therapeutic agents, several phage-displayed peptide libraries in which cyclization is achieved by the covalent linkage of cysteines have been previously demonstrated to identify cyclic-peptide ligands for therapeutic targets. While problems remain in these cysteine conjugation strategies, we have invented a phage display technique in which its displayed peptides are cyclized through a proximity-driven Michael addition reaction between a cysteine and an amber-codon-encoded N-acryloyl-lysine (AcrK). Using a randomized 6-mer library in which peptides were cyclized at two ends through a cysteine-AcrK linker, we demonstrated the successful selection of a potent ligand, CycH8a, for histone deacetylase 8 (HDAC8).

View Article and Find Full Text PDF

Although noncanonical amino acids (ncAAs) were first incorporated into phage libraries through amber suppression nearly two decades ago, their application for use in drug discovery has been limited due to inherent library bias towards sense-containing phages. Here, we report a technique based on superinfection immunity of phages to enrich amber-containing clones, thus avoiding the observed bias that has hindered incorporation of ncAAs into phage libraries. We then take advantage of this technique for development of active site-directed ligand evolution of peptides, where the ncAA serves as an anchor to direct the binding of its peptides to the target's active site.

View Article and Find Full Text PDF

Superior to linear peptides in biological activities, cyclic peptides are considered to have great potential as therapeutic agents. To identify cyclic-peptide ligands for therapeutic targets, phage-displayed peptide libraries in which cyclization is achieved by the covalent conjugation of cysteines have been widely used. To resolve drawbacks related to cysteine conjugation, we have invented a phage-display technique in which its displayed peptides are cyclized through a proximity-driven Michael addition reaction between a cysteine and an amber-codon-encoded N -acryloyl-lysine (AcrK).

View Article and Find Full Text PDF

Siderophores are small molecules used to specifically transport iron into bacteria via related receptors. By adapting siderophores and hijacking their pathways, we may discover an efficient and selective way to target microbes. Herein, we report the synthesis of a siderophore-fluorophore conjugate VF-FL derived from vibrioferrin (VF).

View Article and Find Full Text PDF