Publications by authors named "Peng Weng Kung"

Wine is renowned for its rich content of polyphenols, including resveratrol (Res), known for their health promoting properties. Steamed clam with wine, a popular Mediterranean delicacy that highlights the role of wine as a key ingredient. However, despite these benefits, resveratrol's low bioavailability poses challenges.

View Article and Find Full Text PDF

Diabetes mellitus affected more than 500 million of people globally, with an annual mortality of 1.5 million directly attributable to diabetic complications. Oxidative stress, in particularly in post-prandial state, plays a vital role in the pathogenesis of the diabetic complications.

View Article and Find Full Text PDF

Long-term consumption of mixed fraudulent edible oils increases the risk of developing of chronic diseases which has been a threat to the public health globally. The complicated global supply-chain is making the industry malpractices had often gone undetected. In order to restore the confidence of consumers, traceability (and accountability) of every level in the supply chain is vital.

View Article and Find Full Text PDF

COVID-19 pandemic caused by the novel SARS-CoV-2 has impacted human livelihood globally. Strenuous efforts have been employed for its control and prevention; however, with recent reports on mutated strains with much higher infectivity, transmissibility, and ability to evade immunity developed from previous SARS-CoV-2 infections, prevention alternatives must be prepared beforehand in case. We have perused over 128 recent works (found on Google Scholar, PubMed, and ScienceDirect as of February 2023) on medicinal plants and their compounds for anti-SARS-CoV-2 activity and eventually reviewed 102 of them.

View Article and Find Full Text PDF

With the maturing techniques for advanced synthesis and engineering of two-dimensional (2D) materials, its nanocomposites, hybrid nanostructures, alloys, and heterostructures, researchers have been able to create materials with improved as well as novel functionalities. One of the major applications that have been taking advantage of these materials with unique properties is biomedical devices, which currently prefer to be decentralized and highly personalized with good precision. The unique properties of these materials, such as high surface to volume ratio, a large number of active sites, tunable bandgap, nonlinear optical properties, and high carrier mobility is a boon to 'onics' (photonics/electronics) and 'omics' (genomics/exposomics) technologies for developing personalized, low-cost, feasible, decentralized, and highly accurate medical devices.

View Article and Find Full Text PDF

Diabetic retinopathy (DR) is the most common diabetic eye disease and the worldwide leading cause of vision loss in working-age adults. It progresses from mild to severe non-proliferative or proliferative DR based on several pathological features including the magnitude of blood-retinal barrier breakdown and neovascularization. Available pharmacological and retinal laser photocoagulation interventions are mostly applied in the advanced stages of DR and are inefficient in halting disease progression in a significantly high percentage of patients.

View Article and Find Full Text PDF

Despite being preventable and treatable, malaria still puts almost half of the world's population at risk. Thus, prompt, accurate and sensitive malaria diagnosis is crucial for disease control and elimination. Optical microscopy and immuno-rapid tests are the standard malaria diagnostic methods in the field.

View Article and Find Full Text PDF

malaria is one of the most lethal infectious diseases, with 7 million infections annually. One of the roadblocks to global malaria elimination is the lack of highly sensitive, specific, and accurate diagnostic tools. The absence of diagnostic tools in particular has led to poor differentiation among parasite species, poor prognosis, and delayed treatment.

View Article and Find Full Text PDF

Diabetes mellitus is one of the fastest-growing health burdens globally. Oxidative stress, which has been implicated in the pathogenesis of diabetes complication (e.g.

View Article and Find Full Text PDF

Translation of the findings in basic science and clinical research into routine practice is hampered by large variations in human phenotype. Developments in genotyping and phenotyping, such as proteomics and lipidomics, are beginning to address these limitations. In this work, we developed a new methodology for rapid, label-free molecular phenotyping of biological fluids (e.

View Article and Find Full Text PDF

The 2D layered structured material with unique surface terminations and properties have showed great potential in variety of biomedical research fields including drug delivery and cancer therapeutics which forms the major focus of this review. MXenes as a multifunctional two-dimensional (2D) nanomaterial, has also received momentous research interest in oncology resulting from its intriguing structure and fascinating properties of magnetism and photodynamic properties such as luminescent, conductivity, magnetism, non-toxicity and its bio compatibility. This reported review intends to cover exclusively the synthesis and utilization of MXenes in oncological applications, and subsequently its future outlook in cancer therapeutic, diagnostic and theranostics.

View Article and Find Full Text PDF

Malaria is major public health concerns which continues to claim the lives of more than 435,000 people each year. The challenges with anti-malarial drug resistance and detection of low parasitaemia forms an immediate barrier to achieve the fast-approaching United Nations Sustainable Development Goals of ending malaria epidemics by 2030. In this Opinion article, focusing on the recent published technologies, in particularly the nuclear magnetic resonance (NMR)-based diagnostic technologies, the authors offer their perspectives and highlight ways to bring these point-of-care technologies towards personalized medicine.

View Article and Find Full Text PDF

Cancer is a leading cause of death worldwide and therefore one of the most important public health concerns. In this contribution, we discuss recent key enabling technological innovations (and their challenges), including biomarker-based technologies, that potentially allow for decentralization (e.g.

View Article and Find Full Text PDF

This article aims to discuss the recent development of integrated point-of-care spectroscopic-based technologies that are paving the way for the next generation of diagnostic monitoring technologies in personalized medicine. Focusing on the nuclear magnetic resonance (NMR) technologies as the leading example, we discuss the emergence of -onics technologies (e.g.

View Article and Find Full Text PDF

Despite significant advancements over the years, there remains an urgent need for low cost diagnostic approaches that allow for rapid, reliable and sensitive detection of malaria parasites in clinical samples. Our previous work has shown that magnetic resonance relaxometry (MRR) is a potentially highly sensitive tool for malaria diagnosis. A key challenge for making MRR based malaria diagnostics suitable for clinical testing is the fact that MRR baseline fluctuation exists between individuals, making it difficult to detect low level parasitemia.

View Article and Find Full Text PDF

We report a new technique for sensitive, quantitative and rapid detection of Plasmodium spp.-infected red blood cells (RBCs) by means of magnetic resonance relaxometry (MRR). During the intraerythrocytic cycle, malaria parasites metabolize large amounts of cellular hemoglobin and convert it into hemozoin crystallites.

View Article and Find Full Text PDF

The electrochemical behavior of iron ion in haemoglobin provides insight to the chemical activity in the red blood cell which is important in the field of hematology. Herein, the detection of haemoglobin in human red blood cells on glassy carbon electrode (GC) was demonstrated. Red blood cells or raw blood cells was immobilized on a glassy carbon electrode surface with Nafion films employed to sandwich the layer of biological sample firmly on the electrode surface.

View Article and Find Full Text PDF

Aims: We aim to develop smoothed continuous 2.5th and 97.5th percentile values for labile glycated haemoglobin A1c to glycated haemoglobin A1c (LHbA1c:HbA1c) ratio against HbA1c, and apply them on our patient population for identification of potentially spurious HbA1c measurements.

View Article and Find Full Text PDF

Microwell technology has revolutionized many aspects of in vitro cellular studies from 2D traditional cultures to 3D in vivo-like functional assays. However, existing lithography-based approaches are often costly and time-consuming. This study presents a rapid, low-cost prototyping method of CO2 laser ablation of a conventional untreated culture dish to create concave microwells used for generating multicellular aggregates, which can be readily available for general laboratories.

View Article and Find Full Text PDF

A novel, compact-sized (19 cm × 16 cm) and portable (500 g) magnetic resonance relaxometry system is designed and developed. We overcame several key engineering barriers so that magnetic resonance technology can be potentially used for disease diagnosis-monitoring in point-of-care settings, directly on biological cells and tissues. The whole system consists of a coin-sized permanent magnet (0.

View Article and Find Full Text PDF

This paper reports the fabrication and characterization of an adhesive-based liquid-metal microcoil for magnetic resonance relaxometry (MRR). Conventionally, microcoils are fabricated by various techniques such as electroplating, microcontact printing and focused ion beam milling. These techniques require considerable fabrication efforts and incur high cost.

View Article and Find Full Text PDF

In this work, we propose a new and efficient heteronuclear cross polarization scheme, in which adiabatic frequency sweeps from far off-resonance toward on-resonance are applied simultaneously on both the source and target spins. This technique, which we call as Simultaneous ADIabatic Spin-locking Cross Polarization (SADIS CP), is capable of efficiently locking both the source and target spins with moderate power even in the presence of large spectral distribution and fast relaxation. It is shown that by keeping the time-dependent Hartmann-Hahn mismatch minimal throughout the mixing period, polarization transfer can be accelerated.

View Article and Find Full Text PDF