Background: Up to 80 % of chemotherapeutic drugs induce myelosuppression in patients. Chemotherapy not only impairs of hematopoietic stem cells (HSCs) but also damages bone marrow niches (vascular and endosteal). Current treatments for myelosuppression overlook these chemotherapy-induced damages to bone marrow niches and the critical role of niche restoration on hematopoietic regeneration.
View Article and Find Full Text PDFAtherosclerosis is the primary cause of cardiovascular events such as heart attacks and strokes. However, current medical practice lacks non-invasive, reliable approaches for both imaging atherosclerotic plaques and delivering therapeutic agents directly therein. Here, a biocompatible and biodegradable pH-responsive nanoscale coordination polymers (NCPs) based theranostic system is reported for managing atherosclerosis.
View Article and Find Full Text PDFIn recent years, dibenzyl disulfide (DBDS) in transformer oils has caused many transformer failures around the world, and its removal has attracted more attention. In this work, nine imidazolium-based ionic liquids (ILs) were applied as effective, green desulfurization extractants for DBDS-containing transformer oil for the first time. The results show that the desulfurization ability of the ILs for DBDS followed the order of [BMIM]FeCl > [BMIM]N(CN) > [BMIM]SCN > [BMIM](CHO)PO > [BMIM]MeSO > [BMIM]NTf > [BMIM]OTf > [BMIM]PF > [BMIM]BF.
View Article and Find Full Text PDFThe nanogap memory (NGM) device, emerging as a promising nonvolatile memory candidate, has attracted increasing attention for its simple structure, nano/atomic scale size, elevated operating speed, and robustness to high temperatures. In this study, nanogap memories based on Pd, Au, and Pt were fabricated by combining nanofabrication with electromigration technology. Subsequent evaluations of the electrical characteristics were conducted under ambient air or vacuum conditions at room temperature.
View Article and Find Full Text PDFIschemic stroke remains one of the major causes of serious disability and death globally. LncRNA maternally expressed gene 3 (MEG3) is elevated in middle cerebral artery occlusion/reperfusion (MCAO/R) rats and oxygen-glucose deprivation/reperfusion (OGD/R)-treated neurocytes cells. The objective of this study is to investigate the mechanism underlying MEG3-regulated cerebral ischemia/reperfusion (I/R) injury.
View Article and Find Full Text PDFBackground: Parkinson's disease (PD) ranks as the second most prevalent neurodegenerative disorder globally, and its incidence is rapidly rising. The diagnosis of PD relies on clinical characteristics. Although current treatments aim to alleviate symptoms, they do not effectively halt the disease's progression.
View Article and Find Full Text PDFPrevious studies have shown that microRNAs (miRNAs) are involved in the regulation of a variety of metabolic diseases, which related to some important signal pathways. Our aim was to explore the possible mechanism of miRNAs by revealing the differential expression of serum miRNAs in different BMI of type 2 diabetes mellitus (T2DM) patients with non-alcoholic fatty liver disease (NAFLD). We found that miR-29 decreased liver aminotransferase gamma-GGT and uric acid levels by inhibiting the expression of JNK-1 in non-obese T2DM patients with NAFLD, and down-regulated the expression of atherosclerosis-related factor lipoprotein phospholipase A2 (Lp-PLA2).
View Article and Find Full Text PDFLncRNAs are emerging as important regulators of gene expression by controlling transcription in the nucleus and by modulating mRNA translation in the cytoplasm. In this study, we reveal a novel function of lncRNA SNHG15 in mediating breast cancer cell invasion through regulating the local translation of CDH2 mRNA. We show that SNHG15 preferentially localizes at the cellular protrusions or cell leading edge and that this localization is directed by IMP1, a multifunctional protein involved in many aspects of RNA regulation.
View Article and Find Full Text PDFChemotherapy remains as the first-choice treatment option for triple-negative breast cancer (TNBC). However, the limited tumor penetration and low cellular internalization efficiency of current nanocarrier-based systems impede the access of anticancer drugs to TNBC with dense stroma and thereby greatly restricts clinical therapeutic efficacy, especially for TNBC bone metastasis. In this work, biomimetic head/hollow tail nanorobots were designed through a site-selective superassembly strategy.
View Article and Find Full Text PDFOptical imaging in the second near-infrared window (NIR-II, 1,000-1,700 nm) holds great promise for non-invasive in vivo detection. However, real-time dynamic multiplexed imaging remains challenging due to the lack of available fluorescence probes and multiplexing techniques in the ideal NIR-IIb (1,500-1,700 nm) 'deep-tissue-transparent' sub-window. Here we report on thulium-based cubic-phase downshifting nanoparticles (α-TmNPs) with 1,632 nm fluorescence amplification.
View Article and Find Full Text PDFEarly diagnosis of allograft rejection helps to improve the immune-related management of transplant recipients. The clinically-used core needle biopsy method is invasive and subject to sampling error. In vivo fluorescence imaging for monitoring immune-related processes has the advantages of non-invasiveness, fast feedback and high sensitivity.
View Article and Find Full Text PDFRice blast caused by pathogenic fungus is one of the most serious diseases in rice. The pyramiding of effective resistance genes into rice varieties is a potential approach to reduce the damage of blast disease. In this study, combinations of three resistance genes, , and , were introduced into a thermo-sensitive genic male sterile (PTGMS) line Chuang5S through marker-assisted selection.
View Article and Find Full Text PDFCompared to the significant effort dedicated toward developing efficient electrochromic materials for the working electrodes of electrochromic (EC) devices, the attention paid to developing ion storage counter electrode materials for EC devices has been trivial. Herein, we report that a macroporous crystalline VO film as an ion storage layer paired with a WO working electrode results in an EC device with high performance. The macroporous vanadium oxide films are prepared by a simple template-free photodeposition method that allows us to tune the thickness and crystallinity of the film, thus giving access to a full EC device with optimal EC performance: short response time of about 2 s, high electrochromic cycling stability up to 10,000 times, long memory effect over 24 h, and an exceedingly high coloration efficiency of 189 cm/C that are superior to the state-of-the-art performance of solution-processed vanadium oxide based EC devices.
View Article and Find Full Text PDFIn situ monitoring of tissue regeneration progression is of primary importance to basic medical research and clinical transformation. Despite significant progress in the field of tissue engineering and regenerative medicine, few technologies have been established to in situ inspect the regenerative process. Here, we present an integrated second near-infrared (NIR-II, 1000-1700 nm) window in vivo imaging strategy based on 3D-printed bioactive glass scaffolds doped with NIR-II ratiometric lanthanide-dye hybrid nanoprobes, allowing for in situ monitoring of the early inflammation, angiogenesis, and implant degradation during mouse skull repair.
View Article and Find Full Text PDFAs carcinogenic and ubiquitous pollutants, an in-depth understanding of the long-term environmental behaviors of polycyclic aromatic hydrocarbons (PAHs) and their driving forces is crucial for reducing human health risks. Based on long-term monitoring data from 2001 to 2016, this study systematically investigated the temporal and seasonal trends, periodic oscillation, source apportionment, and human health risks of PAHs in eight rivers in the Free State of Saxony, Germany. The results showed that the annual average ∑PAHs (sum of 16 PAH concentrations) ranged from 28.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2021
Fluorescence lifetime imaging provides more possibility of in vivo multiplexing in second near infrared (NIR-II) window. However, it still faces the obstacle that fluorescent probes with differentiable lifetime often exhibit quite different fluorescence intensity, especially the short lifetime usually accompanies with a weak fluorescence intensity, resulting in the difficulty for simultaneously decoding multiplexed lifetime information due to the interference of background noise. To facilitate high-fidelity lifetime multiplexed imaging, we developed a series of Er doped double interface fluorescent nanoprobes (Er-DINPs): α-NaYF @NaErF : Ce@NaYbF @NaErF : Ce@NaYF with strong fluorescence intensity and easily distinguishable fluorescence lifetime.
View Article and Find Full Text PDFRevealing genomic variation of representative and diverse germplasm is the cornerstone of deploying genomics information into genetic improvement programs of species of agricultural importance. Here we report the re-sequencing of 239 japonica rice elites representing the genetic diversity of japonica germplasm in China, Japan and Korea. A total of 4.
View Article and Find Full Text PDFNat Nanotechnol
September 2021
Persistent luminescence is not affected by background autofluorescence, and thus holds the promise of high-contrast bioimaging. However, at present, persistent luminescent materials for in vivo imaging are mainly bulk crystals characterized by a non-uniform size and morphology, inaccessible core-shell structures and short emission wavelengths. Here we report a series of X-ray-activated, lanthanide-doped nanoparticles with an extended emission lifetime in the second near-infrared window (NIR-II, 1,000-1,700 nm).
View Article and Find Full Text PDFGround-coupled heat pump (GCHP) is used to recovery shallow geothermal energy, a widely distributed green energy source. Due to the imbalance between heat rejection and extraction, heat buildup underground is commonly associated with the long-term operation of GCHPs, which undermine system performance. Heat buildup intrinsically results the irreversibilities (entropy production) in subsurface heat sink, in which thermodynamic and transport properties are largely influenced by hydrogeologic properties, especially the existence of fractures and groundwater.
View Article and Find Full Text PDFHorizontal ground heat exchangers (HGHEs) have advantages such as convenient construction and low cost; however, their application and popularization are restricted owing to traditional linear HGHEs occupying large space and presenting low total heat transfer capacity. Spiral-coil and slinky-coil HGHEs have been proposed, but currently a comprehensive comparison and evaluation for these types of HGHEs are still needed. In this study, a three-dimensional heat transfer model of the three types of HGHEs for ground source heat pumps (GSHPs) was established.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
July 2021
Kidney disease is usually "silent" at the early stage but can lead to severe kidney failure later on. The development of bioimaging probes with rapid distribution and long-term retention in the kidney is significant for the precise diagnosis of renal diseases. Here, a strategy for the peptide-mediated delivery and long-term accumulation (>48 h) of second near-infrared window (NIR-II) fluorophores into the kidney is demonstrated.
View Article and Find Full Text PDFGDF15 has been recently recognized as a tumor-suppressive gene. However, the underlying mechanism by which GDF15 affects breast carcinogenesis is not well understood. Here, we showed that the inhibitory effect of GDF15 on cell proliferation was dependent on the nuclear localization of the protein.
View Article and Find Full Text PDF