Publications by authors named "Peng Maoxiao"

In bivalves, which are molluscs enclosed in a biomineralized shell, a diversity of neuropeptide precursors has been described but their involvement in shell growth has been largely neglected. Here, using a symmetric marine bivalve, the Mediterranean mussel (Mytilus galloprovincialis), we uncover a role for the neuroendocrine system and neuropeptides in shell production. We demonstrate that the mantle is rich in neuropeptide precursors and that a complex network of neuropeptide-secreting fibres innervates the mantle edge a region highly involved in shell growth.

View Article and Find Full Text PDF

Chitin-synthase (CHS) is found in most eukaryotes and has a complex evolutionary history. Research into CHS has mainly been in the context of biomineralization of mollusc shells an area of high interest due to the consequences of ocean acidification. Exploration of CHS at the genomic level in molluscs, the evolution of isoforms, their tissue distribution, and response to environmental challenges are largely unknown.

View Article and Find Full Text PDF

The genome evolution of Antarctic notothenioids has been modulated by their extreme environment over millennia and more recently by human-caused constraints such as overfishing and climate change. Here we investigated the characteristics of the immune system in Notothenia rossii and how it responds to 8 h immersion in viral (Poly I:C, polyinosinic: polycytidylic acid) and bacterial (LPS, lipopolysaccharide) proxies. Blood plasma antiprotease activity and haematocrit were reduced in Poly I:C-treated fish only, while plasma protein, lysozyme activity and cortisol were unchanged with both treatments.

View Article and Find Full Text PDF

Family B1 G protein-coupled receptors (GPCRs) are one of the most well studied neuropeptide receptor families since they play a central role in many biological processes including endocrine, gastrointestinal, cardiovascular and reproduction in animals. The genes for these receptors emerged from a common ancestral gene in bilaterian genomes and evolved via gene/genome duplications and deletions in vertebrate and invertebrate genomes. Their existence and function have mostly been characterized in vertebrates and few studies exist in invertebrate species.

View Article and Find Full Text PDF

Numerous studies have identified the detrimental effects for the biosphere of large plastic debris, the effect of microplastics (MPs) and nanoplastics (NPs) is less clear. The skin is the first point of contact with NPs, and skin fibroblasts have a vital role in maintaining skin structure and function. Here, a comparative approach is taken using three fibroblast cell lines from the zebrafish (SJD.

View Article and Find Full Text PDF

Introduction: Bivalve molluscs are abundant in marine and freshwater systems and contribute essential ecosystem services. They are characterized by an exuberant diversity of biomineralized shells and typically have two symmetric valves (a.k.

View Article and Find Full Text PDF

Complement proteins emerged early in evolution but outside the vertebrate clade they are poorly characterized. An evolutionary model of C3 family members revealed that in contrast to vertebrates the evolutionary trajectory of genes in cnidarian, protostomes and invertebrate deuterostomes was highly divergent due to independent lineage and species-specific duplications. The deduced and vertebrate C3, C4 and C5 proteins had low sequence conservation, but extraordinarily high structural conservation and 2-chain and 3-chain protein isoforms repeatedly emerged.

View Article and Find Full Text PDF
Article Synopsis
  • Allatostatins (ASTs) are small neuropeptides primarily studied in insects that activate specific receptors associated with various functions, but their roles in molluscs have been less explored.
  • This study investigates the evolution and potential functions of AST-like peptides in molluscs, revealing that they generate more mature peptides and have a wider variety of receptor genes compared to those in arthropods.
  • The research also indicates that these peptides are significantly involved in immune responses in bivalves, particularly in the mantle tissue, highlighting their importance and complexity in molluscan biology.
View Article and Find Full Text PDF

The biomineralization mechanism of mollusc shell has been studied for a long time, but there is a lack of understanding about the relationship between the shell formation in vitro and the signaling system in vivo. In this study, we cloned a novel shell matrix protein gene (hc-temptin), which only be characterized as a water-borne protein pheromone of molluscs in previous studies, from the freshwater mussel Hyriopsis cumingii. By bioinformatics analysis we found that temptin was a gene unique to the clade Lophotrochozoa, and it exists in all mollusc taxa except Cephalopoda.

View Article and Find Full Text PDF

Dopamine beta-hydroxylase (DβH) plays an essential role in the synthesis of catecholamines (CA) in neuroendocrine networks. In the razor clam, Sinonovacula constricta a novel gene for DβH (ScDβH-α) was identified that belongs to the copper type II ascorbate-dependent monooxygenase family. Expression analysis revealed ScDβH-α gene transcripts were abundant in the liver and expressed throughout development.

View Article and Find Full Text PDF

Biomineralization is the process by which living organisms acquired the capacity to accumulate minerals in tissues. Shells are the biomineralized exoskeleton of marine molluscs produced by the mantle but factors that regulate mantle shell building are still enigmatic. This study sought to identify candidate regulatory factors of molluscan shell mineralization and targeted family B G-protein coupled receptors (GPCRs) and ligands that include calcium regulatory factors in vertebrates, such as calcitonin (CALC).

View Article and Find Full Text PDF

Dopamine beta-hydroxylase (DβH) plays a key role in the synthesis of catecholamines (CAs) in the neuroendocrine regulatory network. The DβH gene was identified from the razor clam Sinonovacula constricta and referred to as ScDβH. The ScDβH gene is a copper type II ascorbate-dependent monooxygenase with a DOMON domain and two Cu2_monooxygen domains.

View Article and Find Full Text PDF

C-type lectins are a superfamily of Ca-dependent carbohydrate-binding proteins that play crucial roles in invertebrate immunity. In this study, a novel C-type lectin gene (ScCTL-1) was identified in razor clam Sinonovacula constricta. The ScCTL-1 gene, consisting of four C-type carbohydrate recognition domains (CRDs) with an N-terminal signal peptide and a C-terminal transmembrane region.

View Article and Find Full Text PDF

Complement factor B/C2 family (Bf/C2F) proteins are core complement system components in vertebrates that are absent in invertebrates and have been lost by numerous species, raising evolutionary questions. At least 3 duplication events have occurred from Cnidaria (ancestor) to mammals. Type II Bf/C2 genes appeared during separation of Proterostomia and Deuterostomes.

View Article and Find Full Text PDF

To facilitate transplanting razor clam () populations to inland saline-alkaline waters (ISWs), we evaluated the tolerance of juvenile (JSC) to Ca and Mg concentrations, and determined the effects of these ions on JSC growth and physiological parameters. After 30 days stress, the tolerable ranges of JSC to Ca and Mg were determined to be 0.19 mmol⋅L-19.

View Article and Find Full Text PDF

In this study, we investigated the possibility of rearing and breeding the razor clam (Sinonovacula constricta) in inland low salinity water or freshwater. Long-term low salinity (LS) rearing was performed for 3 months to determine the effects of LS on the survival rate, growth rate, and the activities of critical enzymes in juvenile S. constricta (JSC).

View Article and Find Full Text PDF

C1q is an important immune gene that can mediate a variety of immune regulatory functions, and is involved in complement pathway activation. In the present study, a ghC1q gene from the razor clam Sinonovacula constricta was identified and named ScghC1q-1. The complete ScghC1q-1 gene is 692 bp in length, with an open reading frame (ORF) of 489 bp encoding a protein of 162 amino acids.

View Article and Find Full Text PDF

The serum complement component C1q mediates a variety of immune regulatory functions. Herein, we identified a globular head C1q (ghC1q) gene in razor clam Sinonovacula constricta. The complete Sc-ghC1q gene was 872 bp long included an 81 bp 5'-untranslated region (UTR), a 95 bp 3'-UTR with a poly(A) tail, and an open reading frame (ORF) of 696 bp.

View Article and Find Full Text PDF

Galectins are lectins possessing an evolutionarily conserved carbohydrate recognition domain (CRD) with affinity for β-galactoside. The key role played by innate immunity in invertebrates has recently become apparent. Herein, a full-length galectin (ScGal) was identified in razor clam (Sinonovacula constricta).

View Article and Find Full Text PDF

In order to clarify the possibility of rearing razor clams () in inland saline water (ISW) and to facilitate their breeding under these stressful conditions, we performed semi-static acute and chronic toxicity tests to determine the effects of carbonate alkalinity (CA) and pH on the survival and growth rate, and critical metabolic enzyme activity in juvenile of (JSC). (1) Acute toxicity test. As the water increased from 1.

View Article and Find Full Text PDF

Galectins are soluble lectins that perform a pattern recognition function in invertebrate immunity and specifically recognise β-galactoside residues via conserved carbohydrate recognition domains. However, their function in bivalve molluscs has received little attention. Herein, a galectin (ScGal2) in razor clam (Sinonovacula constricta) consisting of a 507 bp open reading frame encoding a protein of 168 amino acids was identified and characterised.

View Article and Find Full Text PDF

The complement-like hemolysis method was used to determine the total complement-like activity of the plasma of Sinonovacula constricta. In this study, the effects of both physical and chemical conditions on complement hemolysis of S. constricta were measured.

View Article and Find Full Text PDF

Complement component 3 (C3) is a core component of the complement system, and directly participates in immune regulation and immune defense. Isoforms of C3 have been reported in several species of vertebrate, but invertebrates, and more specifically clams, have been less well studied. An isoform of C3, named ScC3-2, was identified in Sinonovacula constricta (Chinese razor clam).

View Article and Find Full Text PDF

Complement component 3 (C3) is central to the complement system, playing an important role in immune defense, immune regulation and immune pathology. Several C3 genes have been characterized in invertebrates but very few in shellfish. The C3 gene was identified from the razor clam Sinonovacula constricta, referred to here as Sc-C3.

View Article and Find Full Text PDF

The razor clam Sinonovacula constricta is an important commercial species. The deficiency of developmental transcriptomic data is becoming the bottleneck of further researches on the mechanisms underlying settlement and metamorphosis in early development. In this study, de novo transcriptome sequencing was performed for S.

View Article and Find Full Text PDF