Parkinson's disease is a progressive neurodegenerative disorder in which loss of dopaminergic neurons in the substantia nigra results in a clinically heterogeneous group with variable motor and non-motor symptoms with a degree of misdiagnosis. Only 3-25% of sporadic Parkinson's patients present with genetic abnormalities that could represent a risk factor, thus environmental, metabolic, and other unknown causes contribute to the pathogenesis of Parkinson's disease, which highlights the critical need for biomarkers. In the present study, we prospectively collected and analyzed plasma samples from 194 Parkinson's disease patients and 197 age-matched non-diseased controls.
View Article and Find Full Text PDFLow molecular-mass aliphatic carboxylic acids are critically important for intermediate metabolism and may serve as important biomarkers for metabolic homeostasis. Here in, we focused on multiplexed method development of aliphatic carboxylic analytes, including methylsuccinic acid (MSA), ethylmalonic acid (EMA), and glutaric acid (GA). Also assessed was their utility in a population's health as well as metabolic disease screening in both plasma and urine matrices.
View Article and Find Full Text PDFBackground: Neural Cell Adhesion Molecule 1 (NCAM-1), a multifunctional member of the immunoglobulin superfamily, is expressed on the surface of neurons, glia, skeletal muscle, and natural killer cells. NCAM-1 has been implicated as having a role in cell-cell adhesion, involved in development of the nervous system, and for cells involved in the expansion of T cells and dendritic cells which play an important role in immune surveillance. Sensitive and specific methods to quantify non-surface bound NCAM-1 are not available.
View Article and Find Full Text PDFLovastatin is an anti-cholesterol lactone drug indicated for the treatment of hyperlipidemia and to reduce the risk of coronary heart disease. It is converted to the β-hydroxy acid form (lovastatin acid) , which is the major pharmacologically active metabolite. Here, we describe the development and validation of an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS)-based method utilizing polarity switching for the simultaneous quantification of lovastatin and lovastatin acid in human plasma.
View Article and Find Full Text PDFHepatic OATPs 1B1, 1B3 and 2B1, as well as P-gp, play important roles in regulating liver uptake and biliary excretion of drugs. The intrinsic ethnic variability in OATP1B1-mediated hepatic uptake of statins has been proposed to underlie the ethnic variability in plasma exposures of statins between Caucasians and Asians. Using a targeted quantitative proteomic approach, we determined hepatic protein concentrations of OATP1B1, OATP1B3, OATP2B1, P-gp, and PMCA4 (a housekeeping protein) in a panel of human livers (n = 141) and compared protein expression across Caucasian, Asian, African-American, and unidentified donors.
View Article and Find Full Text PDFEflornithine (α-difluoromethylornithine) has been used to treat second-stage (or meningoencephalitic-stage) human African trypanosomiasis and currently is under clinical development for cancer prevention. In this study, a new ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS)-based assay was developed and validated for the quantification of eflornithine in rat brain. To improve chromatographic retention and MS detection, eflornithine was derivatized with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate for 5 min at room temperature prior to injection.
View Article and Find Full Text PDFBy utilization of three-dimensional structure information of rifamycins bound to RNA polymerase (RNAP) and the human pregnane X receptor (hPXR), representative examples (2b-d) of a novel subclass of benzoxazinorifamycins have been synthesized. Relative to rifalazil (2a), these analogues generally display superior affinity toward wild-type and Rif-resistant mutants of the Mycobacterium tuberculosis RNAP but lowered antitubercular activity in cell culture under both aerobic and anaerobic conditions. Lowered affinity toward hPXR for some of the analogues is also observed, suggesting a potential for reduced Cyp450 induction activity.
View Article and Find Full Text PDF4-Hydroxyequilenin (4-OHEN) is a major phase I metabolite of the equine estrogens present in widely prescribed hormone replacement formulations. 4-OHEN is autoxidized to an electrophilic o-quinone that has been shown to redox cycle, generating ROS, and to covalently modify proteins and DNA and thus potentially to act as a chemical carcinogen. To establish the ability of 4-OHEN to act as a hormonal carcinogen at the estrogen receptor (ER), estrogen responsive gene expression and proliferation were studied in ER(+) breast cancer cells.
View Article and Find Full Text PDFMetabolic activation of estrogens to catechols and further oxidation to highly reactive o-quinones generates DNA damage including apurinic/apyrimidinic (AP) sites. 4-Hydroxyequilenin (4-OHEN) is the major catechol metabolite of equine estrogens present in estrogen replacement formulations, known to cause DNA strand breaks, oxidized bases, and stable and depurinating adducts. However, the direct formation of AP sites by 4-OHEN has not been characterized.
View Article and Find Full Text PDFEstrogen exposure is a risk factor for breast cancer, and estrogen oxidative metabolites have been implicated in chemical carcinogenesis. Oxidation of the catechol metabolite of estrone (4-OHE) and the beta-naphthohydroquinone metabolite of equilenin (4-OHEN) gives o-quinones that produce ROS and damage DNA by adduction and oxidation. To differentiate hormonal and chemical carcinogensis pathways in estrogen receptor positive ER(+) cells, catechol or beta-naphthohydroquinone warheads were conjugated to the selective estrogen receptor modulator (SERM) desmethylarzoxifene (DMA).
View Article and Find Full Text PDFExposure to estrogens increases the risk of breast and endometrial cancer. It is proposed that the estrogen receptor (ER) may contribute to estrogen carcinogenesis by transduction of the hormonal signal and as a "Trojan horse" concentrating genotoxic estrogen metabolites in the nucleus to complex with DNA, enhancing DNA damage. 4-Hydroxyequilenin (4-OHEN), the major catechol metabolite of equine estrogens present in estrogen replacement formulations, autoxidizes to a redox-cycling quinone that has been shown to cause DNA damage.
View Article and Find Full Text PDFOxidative metabolism of estrogens has been associated with genotoxicity. O-methylation of catechol estrogens is considered as a protective mechanism. 4-Methoxyequilenin (4-MeOEN) is the O-methylated product of 4-hydroxyequilenin (4-OHEN).
View Article and Find Full Text PDFThe search for the "ideal" selective estrogen receptor modulator (SERM) as a substitute for hormone replacement therapy (HRT) or use in cancer chemoprevention has focused on optimization of estrogen receptor (ER) ligand binding. Based on the clinical and preclinical benzothiophene SERMs, raloxifene and arzoxifene, a family of SERMs has been developed to modulate activity and oxidative lability. Antiestrogenic potency measured in human endometrial and breast cancer cells, and ER ligand binding data were correlated and seen to provide a guide to SERM design only when viewed in toto.
View Article and Find Full Text PDF4-Methoxyequilenin (4-MeOEN) is an O-methylated metabolite in equine estrogen metabolism. O-methylation of catechol estrogens is considered as a protective mechanism; however, comparison of the properties of 4-MeOEN with estradiol (E(2)) in human breast cancer cells showed that 4-MeOEN is a proliferative, estrogenic agent that may contribute to carcinogenesis. 4-MeOEN results from O-methylation of 4-hydroxyequilenin, a major catechol metabolite of the equine estrogens present in hormone replacement therapeutics, which causes DNA damage via quinone formation, raising the possibility of synergistic hormonal and chemical carcinogenesis.
View Article and Find Full Text PDF