Unlabelled: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for medically refractory Parkinson's disease. Although DBS has recognized clinical utility, its biologic mechanisms are not fully understood, and whether dopamine release is a potential factor in those mechanisms is in dispute. We tested the hypothesis that STN DBS-evoked dopamine release depends on the precise location of the stimulation site in the STN and the site of recording in the caudate and putamen.
View Article and Find Full Text PDFDeep brain stimulation (DBS) of the thalamic centromedian/parafascicular (CM-Pf) complex has been reported as a promising treatment for patients with severe, treatment-resistant Tourette syndrome (TS). In this study, safety and clinical outcomes of bilateral thalamic CM-Pf DBS were reviewed in a series of 12 consecutive patients with medically refractory TS, 11 of whom met the criteria of postsurgical follow-up at our institution for at least 2 months. Five patients were followed for a year or longer.
View Article and Find Full Text PDFBackground: Functional magnetic resonance imaging (fMRI) is a powerful method for identifying in vivo network activation evoked by deep brain stimulation (DBS).
Objective: Identify the global neural circuitry effect of subthalamic nucleus (STN) DBS in nonhuman primates (NHP).
Method: An in-house developed MR image-guided stereotactic targeting system delivered a mini-DBS stimulating electrode, and blood oxygenation level-dependent (BOLD) activation during STN DBS in healthy NHP was measured by combining fMRI with a normalized functional activation map and general linear modeling.
Background: Deep brain stimulation (DBS) of the centromedian-parafascicular (CM-Pf) thalamic nuclei has been considered an option for treating Tourette syndrome. Using a large animal DBS model, this study was designed to explore the network effects of CM-Pf DBS.
Methods: The combination of DBS and functional magnetic resonance imaging is a powerful means of tracing brain circuitry and testing the modulatory effects of electrical stimulation on a neuronal network in vivo.