Publications by authors named "Penelope Kay-Fedorov"

Transgenic expression of protective molecules in porcine cells and tissues is a promising approach to prevent xenograft rejection. Viruses have developed various strategies to escape the host's immune system. We generated porcine B cells (B cell line L23) expressing the human adenovirus protein E3/49K or the human cytomegalovirus protein pUL11 and investigated how human T, NK and B cell responses are affected by the expression of the viral proteins.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) encodes numerous immunomodulatory genes that facilitate its persistence. Previously described mechanisms by which HCMV avoids T cell control typically involve evasion of detection by infected cells. Here, we show that the virus also inhibits T cells directly via an interaction between the pUL11 glycoprotein on infected cells and the CD45 phosphatase on T cells.

View Article and Find Full Text PDF

Human Cytomegalovirus (HCMV) is a widespread pathogen, infection with which can cause severe disease for immunocompromised individuals. The complex changes wrought on the host's immune system during both productive and latent HCMV infection are well known. Infected cells are masked and manipulated and uninfected immune cells are also affected; peripheral blood mononuclear cell (PBMC) proliferation is reduced and cytokine profiles altered.

View Article and Find Full Text PDF

Background: Advances in next-generation sequencing (NGS) technologies allow comprehensive studies of genetic diversity over the entire genome of human cytomegalovirus (HCMV), a significant pathogen for immunocompromised individuals.

Methods: Next-generation sequencing was performed on target enriched sequence libraries prepared directly from a variety of clinical specimens (blood, urine, breast milk, respiratory samples, biopsies, and vitreous humor) obtained longitudinally or from different anatomical compartments from 20 HCMV-infected patients (renal transplant recipients, stem cell transplant recipients, and congenitally infected children).

Results: De novo-assembled HCMV genome sequences were obtained for 57 of 68 sequenced samples.

View Article and Find Full Text PDF

2'-5'-Oligoadenylate synthetases (OASs) produce the second messenger 2'-5'-oligoadenylate, which activates RNase L to induce an intrinsic antiviral state. We report on the crystal structures of catalytic intermediates of OAS1 including the OAS1·dsRNA complex without substrates, with a donor substrate, and with both donor and acceptor substrates. Combined with kinetic studies of point mutants and the previously published structure of the apo form of OAS1, the new data suggest a sequential mechanism of OAS activation and show the individual roles of each component.

View Article and Find Full Text PDF

The receptor tyrosine phosphatase CD45 is expressed on the surface of almost all cells of hematopoietic origin. CD45 functions are central to the development of T cells and determine the threshold at which T and B lymphocytes can become activated. Given this pivotal role of CD45 in the immune system, it is probably not surprising that viruses interfere with the activity of CD45 in lymphocytes to dampen the immune response and that they also utilize this molecule to accomplish their replication cycle.

View Article and Find Full Text PDF

Human cytomegalovirus (CMV) exerts diverse and complex effects on the immune system, not all of which have been attributed to viral genes. Acute CMV infection results in transient restrictions in T cell proliferative ability, which can impair the control of the virus and increase the risk of secondary infections in patients with weakened or immature immune systems. In a search for new immunomodulatory proteins, we investigated the UL11 protein, a member of the CMV RL11 family.

View Article and Find Full Text PDF