Cell stiffness is an important characteristic of cells and their response to external stimuli. In this review, we survey methods used to measure cell stiffness, summarize stimuli that alter cell stiffness, and discuss signaling pathways and mechanisms that control cell stiffness. Several pathological states are characterized by changes in cell stiffness, suggesting this property can serve as a potential diagnostic marker or therapeutic target.
View Article and Find Full Text PDFMany cell types, including neurons, astrocytes and other cells of the central nervous system respond to changes in extracellular matrix or substrate viscoelasticity, and increased tissue stiffness is a hallmark of several disease states including fibrosis and some types of cancers. Whether the malignant tissue in brain, an organ that lacks the protein-based filamentous extracellular matrix of other organs, exhibits the same macroscopic stiffening characteristic of breast, colon, pancreatic, and other tumors is not known. In this study we show that glioma cells like normal astrocytes, respond strongly in vitro to substrate stiffness in the range of 100 to 2000 Pa, but that macroscopic (mm to cm) tissue samples isolated from human glioma tumors have elastic moduli on the order of 200 Pa that are indistinguishable from those of normal brain.
View Article and Find Full Text PDFLiver fibrosis is characterized by excessive deposition of extracellular matrix proteins by myofibroblasts derived from hepatic stellate cells and portal fibroblasts. Activation of these precursors to myofibroblasts requires matrix stiffness, which results in part from increased collagen cross-linking mediated by lysyl oxidase (LOX) family proteins. The aims of this study were to characterize the mechanical changes of early fibrosis, to identify the cells responsible for LOX production in early injury, and to determine which cells in normal liver produce collagens and elastins, which serve as substrates for LOXs early after injury.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
July 2011
Polymeric scaffolds formed from synthetic or natural materials have many applications in tissue engineering and medicine, and multiple material properties need to be optimized for specific applications. Recent studies have emphasized the importance of the scaffolds' mechanical properties to support specific cellular responses in addition to considerations of biochemical interactions, material transport, immunogenicity, and other factors that determine biocompatibility. Fibrin gels formed from purified fibrinogen and thrombin, the final two reactants in the blood coagulation cascade, have long been shown to be effective in wound healing and supporting the growth of cells in vitro and in vivo.
View Article and Find Full Text PDFSoft hydrogels serving as substrates for cell attachment are used to culture many types of cells. The mechanical properties of these gels influence cell morphology, growth, and differentiation. For studies of cell growth on inhomogeneous gels, techniques by which the mechanical properties of the substrate can be measured within the proximity of a given cell are of interest.
View Article and Find Full Text PDFActin and microtubules (MT) are targets of numerous molecular pathways that control neurite outgrowth. To generate a neuronal protrusion, coordinated structural changes of the actin and MT cytoskeletons must occur. Neurite formation occurs when actin filaments (F-actin) are destabilized, filopodia are extended, and MTs invade filopodia.
View Article and Find Full Text PDFMany cell types alter their morphology and gene expression profile when grown on chemically equivalent surfaces with different rigidities. One expectation of this change in morphology and composition is that the cell's internal stiffness, governed by cytoskeletal assembly and production of internal stresses, will change as a function of substrate stiffness. Atomic force microscopy was used to measure the stiffness of fibroblasts grown on fibronectin-coated polyacrylamide gels of shear moduli varying between 500 and 40,000 Pa.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
December 2007
Liver fibrosis, the response to chronic liver injury, results from the activation of mesenchymal cells to fibrogenic myofibroblasts. We have recently shown that two key myofibroblast precursor populations, hepatic stellate cells and portal fibroblasts, undergo activation in culture in response to increasing substrate stiffness. We therefore hypothesized that alterations in liver stiffness precede myofibroblast activation and fibrosis in vivo as well.
View Article and Find Full Text PDFSince their first introduction, polyacrylamide hydrogels have proven to be very useful for studies of mechanical interactions at the cell-substrate interface. In this chapter, we briefly review the basic concepts of this method and provide a series of modifications that have evolved since its inception. In addition, we have described several alternative uses of polyacrylamide hydrogels that have emerged for the study of cellular mechanics.
View Article and Find Full Text PDFMany cellular processes lead to changes in elastic and viscous properties of cells. Rheology is the science that deals with deformation and flow of materials. Fundamental rheologic concepts are explained, and some of the main techniques are discussed.
View Article and Find Full Text PDFMost organs and biological tissues are soft viscoelastic materials with elastic moduli ranging from on the order of 100 Pa for the brain to 100 000 Pa for soft cartilage. Biocompatible synthetic materials already have many applications, but combining chemical compatibility with physiologically appropriate mechanical properties will increase their potential for use both as implants and as substrates for tissue engineering. Understanding and controlling mechanical properties, specifically softness, is important for appropriate physiological function in numerous contexts.
View Article and Find Full Text PDFWhen subject to stress or external loads, most materials resist deformation. Any stable material, for instance, resists compression-even liquids. Solids also resist simple shear deformations that conserve volume.
View Article and Find Full Text PDFCortical neurons and astrocytes respond strongly to changes in matrix rigidity when cultured on flexible substrates. In this study, existing polyacrylamide gel polymerization methods were modified into a novel method for making substrates capable of engaging specific cell-adhesion receptors. Embryonic cortical dissociations were cultured on polyacrylamide or fibrin gel scaffolds of varying compliance.
View Article and Find Full Text PDFSeptic shock from bacterial endotoxin, triggered by the release of lipopolysaccharide (LPS) molecules from the outer wall of Gram-negative bacteria, is a major cause of human death for which there is no effective treatment once the complex inflammatory pathways stimulated by these small amphipathic molecules are activated. Here we report that plasma gelsolin, a highly conserved human protein, binds LPS from various bacteria with high affinity. Solid-phase binding assays, fluorescence measurements, and functional assays of actin depolymerizing effects show that gelsolin binds more tightly to LPS than it does to its other known lipid ligands, phosphatidylinositol 4,5-bisphosphate and lysophosphatidic acid.
View Article and Find Full Text PDFMany cell types respond to forces as acutely as they do to chemical stimuli, but the mechanisms by which cells sense mechanical stimuli and how these factors alter cellular structure and function in vivo are far less explored than those triggered by chemical ligands. Forces arise both from effects outside the cell and from mechanochemical reactions within the cell that generate stresses on the surface to which the cells adhere. Several recent reviews have summarized how externally applied forces may trigger a cellular response (Silver FH and Siperko LM.
View Article and Find Full Text PDFCell Motil Cytoskeleton
January 2005
The morphology and cytoskeletal structure of fibroblasts, endothelial cells, and neutrophils are documented for cells cultured on surfaces with stiffness ranging from 2 to 55,000 Pa that have been laminated with fibronectin or collagen as adhesive ligand. When grown in sparse culture with no cell-cell contacts, fibroblasts and endothelial cells show an abrupt change in spread area that occurs at a stiffness range around 3,000 Pa. No actin stress fibers are seen in fibroblasts on soft surfaces, and the appearance of stress fibers is abrupt and complete at a stiffness range coincident with that at which they spread.
View Article and Find Full Text PDF