Nutrient-dependent mTORC1 regulation upon amino acid deprivation is mediated by the KICSTOR complex, comprising SZT2, KPTN, ITFG2, and KICS2, recruiting GATOR1 to lysosomes. Previously, pathogenic SZT2 and KPTN variants have been associated with autosomal recessive intellectual disability and epileptic encephalopathy. We identified bi-allelic KICS2 variants in eleven affected individuals presenting with intellectual disability and epilepsy.
View Article and Find Full Text PDFActivated phosphoinositide 3-kinase delta syndrome (APDS) is a rare genetic disorder that presents clinically as a primary immunodeficiency. Clinical presentation of APDS includes severe, recurrent infections, lymphoproliferation, lymphoma, and other cancers, autoimmunity and enteropathy. Autosomal dominant variants in two independent genes have been demonstrated to cause APDS.
View Article and Find Full Text PDFKnowledge transfer among research disciplines can lead to substantial research progress. At first glance, astronaut health and rare diseases may be seen as having little common ground for such an exchange. However, deleterious health conditions linked to human space exploration may well be considered as a narrow sub-category of rare diseases.
View Article and Find Full Text PDFMitochondrial DNA (mtDNA) depletion/deletions syndromes (MDDS) encompass a clinically and etiologically heterogenous group of mitochondrial disorders caused by impaired mtDNA maintenance. Among the most frequent causes of MDDS are defects in nucleoside/nucleotide metabolism, which is critical for synthesis and homeostasis of the deoxynucleoside triphosphate (dNTP) substrates of mtDNA replication. A central enzyme for generating dNTPs is ribonucleotide reductase, a critical mediator of de novo nucleotide synthesis composed of catalytic RRM1 subunits in complex with RRM2 or p53R2.
View Article and Find Full Text PDFCongenital heart defects (CHD) are the most commonly occurring birth defect and can occur in isolation or with additional clinical features comprising a genetic syndrome. Autosomal dominant variants in TAB2 are recognized by the American Heart Association as causing nonsyndromic CHD, however, emerging data point to additional, extra-cardiac features associated with TAB2 variants. We identified 15 newly reported individuals with pathogenic TAB2 variants and reviewed an additional 24 subjects with TAB2 variants in the literature.
View Article and Find Full Text PDFWhile >300 disease-causing variants have been identified in the mitochondrial DNA (mtDNA) polymerase γ, no mitochondrial phenotypes have been associated with POLRMT, the RNA polymerase responsible for transcription of the mitochondrial genome. Here, we characterise the clinical and molecular nature of POLRMT variants in eight individuals from seven unrelated families. Patients present with global developmental delay, hypotonia, short stature, and speech/intellectual disability in childhood; one subject displayed an indolent progressive external ophthalmoplegia phenotype.
View Article and Find Full Text PDFWe report bi-allelic pathogenic HPDL variants as a cause of a progressive, pediatric-onset spastic movement disorder with variable clinical presentation. The single-exon gene HPDL encodes a protein of unknown function with sequence similarity to 4-hydroxyphenylpyruvate dioxygenase. Exome sequencing studies in 13 families revealed bi-allelic HPDL variants in each of the 17 individuals affected with this clinically heterogeneous autosomal-recessive neurological disorder.
View Article and Find Full Text PDFLONP1 is an ATP-dependent protease and chaperone that plays multiple vital roles in mitochondria. LONP1 is essential for mitochondrial homeostasis due to its role in maintenance of the mitochondrial genome and its central role in regulating mitochondrial processes such as oxidative phosphorylation, mitophagy, and heme biosynthesis. Bi-allelic LONP1 mutations have been reported to cause a constellation of clinical presentations.
View Article and Find Full Text PDFLeigh syndrome is one of the most common neurological phenotypes observed in pediatric mitochondrial disease presentations. It is characterized by symmetrical lesions found on neuroimaging in the basal ganglia, thalamus, and brainstem and by a loss of motor skills and delayed developmental milestones. Genetic diagnosis of Leigh syndrome is complicated on account of the vast genetic heterogeneity with >75 candidate disease-associated genes having been reported to date.
View Article and Find Full Text PDFIn humans, disruption of nonsense-mediated decay (NMD) has been associated with neurodevelopmental disorders (NDDs) such as autism spectrum disorder and intellectual disability. However, the mechanism by which deficient NMD leads to neurodevelopmental dysfunction remains unknown, preventing development of targeted therapies. Here we identified novel protein-coding UPF2 (UP-Frameshift 2) variants in humans with NDD, including speech and language deficits.
View Article and Find Full Text PDFPanthothenate kinase-associated neurodegeneration (PKAN, OMIM 234200), is an inborn is an autosomal recessive inborn error of metabolism caused by pathogenic variants in PANK2. PANK2 encodes the enzyme pantothenate kinase 2 (EC 2.7.
View Article and Find Full Text PDFPARN encodes poly(A)-specific ribonuclease. Biallelic and monoallelic PARN variants are associated with Hoyeraal-Hreidarsson syndrome/dyskeratosis congenita and idiopathic pulmonary fibrosis (IPF), respectively. The molecular features associated with incomplete penetrance of PARN-associated IPF have not been described.
View Article and Find Full Text PDFMutations in either the mitochondrial or nuclear genomes are associated with a diverse group of human disorders characterized by impaired mitochondrial respiration. Within this group, an increasing number of mutations have been identified in nuclear genes involved in mitochondrial RNA metabolism, including ELAC2. The ELAC2 gene codes for the mitochondrial RNase Z, responsible for endonucleolytic cleavage of the 3' ends of mitochondrial pre-tRNAs.
View Article and Find Full Text PDFObjectives: Mitochondrial methionyl-tRNA formyltransferase (MTFMT) is required for the initiation of translation and elongation of mitochondrial protein synthesis Pathogenic variants in have been associated with Leigh syndrome (LS) and mitochondrial multiple respiratory chain deficiencies. We sought to elucidate the spectrum of clinical, neuroradiological and molecular genetic findings of patients with bi-allelic pathogenic variants in .
Methods: Retrospective cohort study combining new cases and previously published cases.
Primary mitochondrial dysfunction is an under-appreciated cause of cardiomyopathy, especially when cardiac symptoms are the unique or prevalent manifestation of disease. Here, we report an unusual presentation of mitochondrial cardiomyopathy, with dilated phenotype and pathologic evidence of biventricular fibro-adipose replacement, in a 33-year old woman who underwent cardiac transplant. Whole exome sequencing revealed two novel compound heterozygous variants in the TSFM gene, coding for the mitochondrial translation elongation factor EF-Ts.
View Article and Find Full Text PDFMitochondrial DNA depletion syndromes (MTDPS) are a group of rare genetic disorders caused by defects in multiple genes involved in mitochondrial DNA (mtDNA) maintenance. Among those, mutations result in the encephalomyopathic mtDNA depletion syndrome 13 (MTDPS13; OMIM #615471), which commonly presents as a combination of failure to thrive, neurodevelopmental delays, encephalopathy, hypotonia, and persistent lactic acidosis. We report here the case of a Lebanese infant presenting to us with profound neurodevelopmental delays, generalized hypotonia, facial dysmorphic features, and extreme emaciation.
View Article and Find Full Text PDFADP-ribosylation is a reversible posttranslational modification used to regulate protein function. ADP-ribosyltransferases transfer ADP-ribose from NAD to the target protein, and ADP-ribosylhydrolases, such as ADPRHL2, reverse the reaction. We used exome sequencing to identify five different bi-allelic pathogenic ADPRHL2 variants in 12 individuals from 8 families affected by a neurodegenerative disorder manifesting in childhood or adolescence with key clinical features including developmental delay or regression, seizures, ataxia, and axonal (sensori-)motor neuropathy.
View Article and Find Full Text PDFOXA1, the mitochondrial member of the YidC/Alb3/Oxa1 membrane protein insertase family, is required for the assembly of oxidative phosphorylation complexes IV and V in yeast. However, depletion of human OXA1 (OXA1L) was previously reported to impair assembly of complexes I and V only. We report a patient presenting with severe encephalopathy, hypotonia and developmental delay who died at 5 years showing complex IV deficiency in skeletal muscle.
View Article and Find Full Text PDFShort-chain enoyl-CoA hydratase (SCEH or ECHS1) deficiency is a rare inborn error of metabolism caused by biallelic mutations in the gene ECHS1 (OMIM 602292). Clinical presentation includes infantile-onset severe developmental delay, regression, seizures, elevated lactate, and brain MRI abnormalities consistent with Leigh syndrome (LS). Characteristic abnormal biochemical findings are secondary to dysfunction of valine metabolism.
View Article and Find Full Text PDFMetabolomic profiling is an emerging technology in the clinical setting with immediate diagnostic potential for the population of patients with Inborn Errors of Metabolism. We present the metabolomics profile of two ABAT deficiency patients both pre- and posttreatment with flumazenil. ABAT deficiency, also known as GABA-transaminase deficiency, is caused by recessive mutations in the gene ABAT and leads to encephalopathy of variable severity with hypersomnolence, hypotonia, hypomyelination, and seizures.
View Article and Find Full Text PDFPurpose: Biallelic mutations in SCYL1 were recently identified as causing a syndromal disorder characterized by peripheral neuropathy, cerebellar atrophy, ataxia, and recurrent episodes of liver failure. The occurrence of SCYL1 deficiency among patients with previously undetermined infantile cholestasis or acute liver failure has not been studied; furthermore, little is known regarding the hepatic phenotype.
Methods: We aimed to identify patients with SCYL1 variants within an exome-sequencing study of individuals with infantile cholestasis or acute liver failure of unknown etiology.
In recent years, an increasing number of mitochondrial disorders have been associated with mutations in mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs), which are key enzymes of mitochondrial protein synthesis. Bi-allelic functional variants in VARS2, encoding the mitochondrial valyl tRNA-synthetase, were first reported in a patient with psychomotor delay and epilepsia partialis continua associated with an oxidative phosphorylation (OXPHOS) Complex I defect, before being described in a patient with a neonatal form of encephalocardiomyopathy. Here we provide a detailed genetic, clinical, and biochemical description of 13 patients, from nine unrelated families, harboring VARS2 mutations.
View Article and Find Full Text PDFIron-sulfur (Fe-S) clusters are essential cofactors for proteins that participate in fundamental cellular processes including metabolism, DNA replication and repair, transcriptional regulation, and the mitochondrial electron transport chain (ETC). ISCA2 plays a role in the biogenesis of Fe-S clusters and a recent report described subjects displaying infantile-onset leukodystrophy due to bi-allelic mutation of ISCA2. We present two additional unrelated cases, and provide a more complete clinical description that includes hyperglycinemia, leukodystrophy of the brainstem with longitudinally extensive spinal cord involvement, and mtDNA deficiency.
View Article and Find Full Text PDFGorlin-Chaudhry-Moss syndrome (GCMS) is a dysmorphic syndrome characterized by coronal craniosynostosis and severe midface hypoplasia, body and facial hypertrichosis, microphthalmia, short stature, and short distal phalanges. Variable lipoatrophy and cutis laxa are the basis for a progeroid appearance. Using exome and genome sequencing, we identified the recurrent de novo mutations c.
View Article and Find Full Text PDF