Publications by authors named "Pellegrino T"

Experiments on human auditory perception have shown that interaural time difference (ITD) is sufficient to generate spatial percepts, even though stimuli containing only the ITD cue are perceived as being emitted from inside the head instead of from external locations at specific azimuths. These experiments are thus interpreted as "lateralization" instead of "localization" tasks. In fact, lateralized spatial perception has been quantified using tasks in which participants have to report their estimates by selecting a putative location inside the head, or matching the perceived position to sounds with a given interaural level difference.

View Article and Find Full Text PDF

A self-assemble amphiphilic diblock copolymer that can incorporate iron oxide nanocubes (IONCs) in chain-like assemblies as heat mediators for magnetic hyperthermia (MHT) and tuneable amounts of IR780 dye as agent for photothermal therapy (PTT) is developed. MHT-heating performance of photobeads in viscous media have the same heat performances in water at magnetic field conditions of clinical use. Thanks to IR780, the photobeads are activated by infrared laser light within the first biological window (808 nm) with a significant enhancement of photo-stability of IR780 enabling the raise of the temperature at therapeutic values during multiple PTT cycles and showing unchanged optical features up to 8 days.

View Article and Find Full Text PDF

Purpose: To build and validate a combined radiomics and machine learning (ML) approach using B-mode US and SWE images to differentiate benign from malignant solid breast lesions (BLs) and compare its performance with that of an expert radiologist.

Methods: Patients with at least one BI-RADS 2-6 BL who performed breast US integrated with SWE were retrospectively included. B-mode US and SWE images were manually segmented to extract radiomics features.

View Article and Find Full Text PDF

Background: The unexpected detection of axillary lymphadenopathy (AxL) in cancer patients (pts) represents a real concern during the COVID-19 vaccination era. Benign reactions may take place after vaccine inoculation, which can mislead image interpretation in patients undergoing F-18-FDG, F-18-Choline, and Ga-68-DOTATOC PET/CT. They may also mimic loco-regional metastases or disease.

View Article and Find Full Text PDF

The recent COVID19 pandemic has remarkably boosted the research on diagnosis assays to detect biomarkers in biological fluids. Specificity and sensitivity are mandatory for diagnostic kits aiming to reach clinical stages. Whilst the modulation of sensitivity can significantly improve the detection of biomarkers in liquids, this has been scarcely explored.

View Article and Find Full Text PDF

In this work, we constructed a multifunctional composite nanostructure for combined magnetic hyperthermia therapy and magnetic resonance imaging based on and signals. First, iron oxide nanocubes with a benchmark heating efficiency for magnetic hyperthermia were assembled within an amphiphilic polymer to form magnetic nanobeads. Next, poly(acrylic acid)-coated inorganic sodium gadolinium fluoride nanoparticles were electrostatically loaded onto the magnetic nanobead surface via a layer-by-layer approach by employing a positively charged enzymatic-cleavable biopolymer.

View Article and Find Full Text PDF

CuFeS chalcopyrite nanoparticles (NPs) can generate heat under exposure to near-infrared laser irradiation. Here, we develop a protocol to decorate the surface of CuFeS NPs (13 nm) with a thermoresponsive (TR) polymer based on poly(ethylene glycol methacrylate) to combine heat-mediated drug delivery and photothermal heat damage. The resulting TR-CuFeS NPs feature a small hydrodynamic size (∼75 nm), along with high colloidal stability and a TR transition temperature of 41 °C in physiological conditions.

View Article and Find Full Text PDF

The application of superparamagnetic iron oxide nanoparticles (SPIONs) in drug delivery, magnetic resonance imaging, cell tracking, and hyperthermia has been long exploited regarding their inducible magnetic properties. Nevertheless, SPIONs remain rapidly cleared from the circulation by the reticuloendothelial system (RES) or mononuclear phagocyte system, with uptake dependent on several factors such as the hydrodynamic diameter, electrical charge and surface coating. This rapid clearance of SPION-based theranostic agents from circulation is one of the main challenges hampering the medical applications that differ from RES targeting.

View Article and Find Full Text PDF

Background: We retrospectively aimed to assess the prognostic significance of somatostatin receptor (SSTR) standardized uptake value (SUVmax), SSTR representative tumor volume (RTV) and total lesion SSTR expression (TL) obtained by [Ga]Ga-edotreotide PET/CT ([Ga]Ga-SSTR PET/CT) in patients with primary gastroenteropancreatic neuroendocrine tumors (GEP-NET) before surgery.

Material And Methods: We analyzed patients who underwent [Ga]Ga-SSTR PET/CT 3-6 weeks before surgery from February 2020 to April 2022. The mean SUVmax value, the RTV (cm3; 42% threshold) and the TL (g) were registered.

View Article and Find Full Text PDF

Magnetic nanoparticles are increasingly used in medical applications, including cancer treatment by magnetic hyperthermia. This protocol describes a solvothermal-based process to prepare, at the gram scale, ferrite nanoparticles with well-defined shape, i.e.

View Article and Find Full Text PDF

The growing interest in multifunctional nano-objects based on polymers and magnetic nanoparticles for biomedical applications motivated us to develop a scale-up protocol to increase the yield of polymeric magnetic nanobeads while aiming at keeping the structural features at optimal conditions. The protocol was applied to two different types of magnetic ferrite nanoparticles: the Mn-ferrite selected for their properties as contrast agents in magnetic resonance imaging and iron oxide nanostar shaped nanoparticles chosen for their heat performance in magnetic hyperthermia. At the same time, some experiments on surface functionalization of nanobeads with amino modified polyethyelene glycol (PEG) molecules have provided further insight into the formation mechanism of magnetic nanobeads and the need to cross-link the polymer shell to improve the stability of the beads, making them more suitable for further manipulation and use.

View Article and Find Full Text PDF

Over the last few years it has been understood that the interface between living cells and the underlying materials can be a powerful tool to manipulate cell functions. In this study, we explore the hypothesis that the electrical cell/material interface can regulate the differentiation of cancer stem-like cells (CSCs). Electrospun polymer fibres, either polyamide 66 or poly(lactic acid), with embedded graphene nanoplatelets (GnPs), have been fabricated as CSC scaffolds, providing both the 3D microenvironment and a suitable electrical environment favorable for CSCs adhesion, growth and differentiation.

View Article and Find Full Text PDF

Exploiting the local heat on the surface of magnetic nanoparticles (MNPs) upon exposure to an alternating magnetic field (AMF) to cleave thermal labile bonds represents an interesting approach in the context of remotely triggered drug delivery. Here, taking advantages of a simple and scalable two-step ligand exchange reaction, we have prepared iron oxide nanocubes (IONCs) functionalized with a novel multifunctional polymer ligand having multiple catechol moieties, furfuryl pendants, and polyethylene glycol (PEG) side chains. Catechol groups ensure a strong binding of the polymer ligands to the IONCs surface, while the PEG chains provide good colloidal stability to the polymer-coated IONCs.

View Article and Find Full Text PDF

Lead-based halide perovskite nanocrystals are highly luminescent materials, but their sensitivity to humid environments and their biotoxicity are still important challenges to solve. Here, we develop a stepwise approach to encapsulate representative CsPbBr nanocrystals into water-soluble polymer capsules. We show that our protocol can be extended to nanocrystals coated with different ligands, enabling an outstanding high photoluminescence quantum yield of ∼60% that is preserved over two years in capsules dispersed in water.

View Article and Find Full Text PDF

Breast cancer-associated fibroblasts (BCAFs), the most abundant non-cancer stromal cells of the breast tumor microenvironment (TME), dramatically sustain breast cancer (BC) progression by interacting with BC cells. BCAFs, as well as myofibroblasts, display an up regulation of activation and inflammation markers represented by α-smooth muscle actin (α-SMA) and cyclooxygenase 2 (COX-2). BCAF aggregates have been identified in the peripheral blood of metastatic BC patients.

View Article and Find Full Text PDF

Kaposi's sarcoma (KS) is a rare inflammation- based vascular cancer involving the skin. The viral aetiology of KS is the Human Herpesvirus 8. KS may be frequently diagnosed in immunosuppressed kidneytransplanted patients, while is less common in patients with dialysis.

View Article and Find Full Text PDF

Here, the synthesis and proof of exploitation of three-material inorganic heterostructures made of iron oxide-gold-copper sulfide (Fe O @Au@Cu S) are reported. Starting with Fe O -Au dumbbell heterostructure as seeds, a third Cu S domain is selectively grown on the Au domain. The as-synthesized trimers are transferred to water by a two-step ligand exchange procedure exploiting thiol-polyethylene glycol to coordinate Au and Cu S surfaces and polycatechol-polyethylene glycol to bind the Fe O surface.

View Article and Find Full Text PDF

Magnetic scaffolds have been investigated as promising tools for the interstitial hyperthermia treatment of bone cancers, to control local recurrence by enhancing radio- and chemotherapy effectiveness. The potential of magnetic scaffolds motivates the development of production strategies enabling tunability of the resulting magnetic properties. Within this framework, deposition and drop-casting of magnetic nanoparticles on suitable scaffolds offer advantages such as ease of production and high loading, although these approaches are often associated with a non-uniform final spatial distribution of nanoparticles in the biomaterial.

View Article and Find Full Text PDF

Cancer immunotherapies have been approved as standard second-line or in some cases even as first-line treatment for a wide range of cancers. However, immunotherapy has not shown clinically relevant success in glioblastoma (GBM). This is principally due to the brain's "immune-privileged" status and the peculiar tumor microenvironment (TME) of GBM characterized by a lack of tumor-infiltrating lymphocytes and the establishment of immunosuppressive mechanisms.

View Article and Find Full Text PDF

Magnetic hyperthermia (MHT) is a therapeutic modality for the treatment of solid tumors that has now accumulated more than 30 years of experience. In the ongoing MHT clinical trials for the treatment of brain and prostate tumors, iron oxide nanoparticles are employed as intra-tumoral MHT agents under a patient-safe 100 kHz alternating magnetic field (AMF) applicator. Although iron oxide nanoparticles are currently approved by FDA for imaging purposes and for the treatment of anemia, magnetic nanoparticles (MNPs) designed for the efficient treatment of MHT must respond to specific physical-chemical properties in terms of magneto-energy conversion, heat dose production, surface chemistry and aggregation state.

View Article and Find Full Text PDF

Among the strategies to fight cancer, multi-therapeutic approaches are considered as a wise choice to put in place multiple weapons to suppress tumors. In this work, to combine chemotherapeutic effects to magnetic hyperthermia when using biocompatible scaffolds, we have established an electrospinning method to produce nanofibers of polycaprolactone loaded with magnetic nanoparticles as heat mediators to be selectively activated under alternating magnetic field and doxorubicin as a chemotherapeutic drug. Production of the fibers was investigated with iron oxide nanoparticles of peculiar cubic shape (at 15 and 23 nm in cube edges) as they provide benchmark heat performance under clinical magnetic hyperthermia conditions.

View Article and Find Full Text PDF

Spinel ferrite nanocubes (NCs), consisting of pure iron oxide or mixed ferrites, are largely acknowledged for their outstanding performance in magnetic hyperthermia treatment (MHT) or magnetic resonance imaging (MRI) applications while their magnetic particle imaging (MPI) properties, particularly for this peculiar shape different from the conventional spherical nanoparticles (NPs), are relatively less investigated. In this work, we report on a non-hydrolytic synthesis approach to prepare mixed transition metal ferrite NCs. A series of NCs of mixed zinc-cobalt-ferrite were prepared and their magnetic theranostic properties were compared to those of cobalt ferrite or zinc ferrite NCs of similar sizes.

View Article and Find Full Text PDF

We report a one-step synthesis of halide perovskite nanocrystals embedded in amphiphilic polymer (poly(acrylic acid)--poly(styrene), PAA--PS) micelles, based on injecting a dimethylformamide solution of PAA--PS, PbBr, ABr (A = Cs, formamidinium, or both) and "additive" molecules in toluene. These bifunctional or trifunctional short chain organic molecules improve the nanocrystal-polymer compatibility, increasing the nanocrystal stability against polar solvents and high flux irradiation (the nanocrystals retain almost 80% of their photoluminescence after 1 h of 3.2 w/cm irradiation).

View Article and Find Full Text PDF

Cancer immunotherapy has shown remarkable results in various cancer types through a range of immunotherapeutic approaches, including chimeric antigen receptor-T cell (CAR-T) therapy, immune checkpoint blockade (ICB), and therapeutic vaccines. Despite the enormous potential of cancer immunotherapy, its application in various clinical settings has been limited by immune evasion and immune suppressive mechanisms occurring locally or systemically, low durable response rates, and severe side effects. In the last decades, the rapid advancement of nanotechnology has been aiming at the development of novel synthetic nanocarriers enabling precise and enhanced delivery of immunotherapeutics, while improving drug stability and effectiveness.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) are the tumor cell subpopulation responsible for resistance to chemotherapy, tumor recurrence, and metastasis. An efficient therapy must act on low proliferating quiescent-CSCs (q-CSCs). We here investigate the effect of magnetic hyperthermia (MHT) in combination with local chemotherapy as a dual therapy to inhibit patient-derived colorectal qCR-CSCs.

View Article and Find Full Text PDF