The transcription factor NF-κB plays a critical role in the control of innate and adaptive immunity and inflammation. Several recent studies have demonstrated that the mutation of different splicing factor genes, including SF3B1, SRSF2 and U2AF1, in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) result in hyperactive NF-κB signaling through the aberrant splicing of different target genes. The presence of U2AF1 and SF3B1 mutations in the bone marrow cells of MDS and AML patients induces oncogenic isoforms of the target gene IRAK4, leading to hyperactivation of NF-κB signaling and an increase in the fitness of leukemic stem and progenitor cells (LSPCs).
View Article and Find Full Text PDFAcquired myeloid malignancies are a spectrum of clonal disorders known to be caused by sequential acquisition of genetic lesions in hematopoietic stem and progenitor cells, leading to their aberrant self-renewal and differentiation. The increasing use of induced pluripotent stem cell (iPSC) technology to study myeloid malignancies has helped usher a paradigm shift in approaches to disease modeling and drug discovery, especially when combined with gene-editing technology. The process of reprogramming allows for the capture of the diversity of genetic lesions and mutational burden found in primary patient samples into individual stable iPSC lines.
View Article and Find Full Text PDFUnlabelled: We report here that expression of the ribosomal protein, RPL22, is frequently reduced in human myelodysplastic syndrome (MDS) and acute myelogenous leukemia (AML); reduced RPL22 expression is associated with worse outcomes. Mice null for Rpl22 display characteristics of an MDS-like syndrome and develop leukemia at an accelerated rate. Rpl22-deficient mice also display enhanced hematopoietic stem cell (HSC) self-renewal and obstructed differentiation potential, which arises not from reduced protein synthesis but from increased expression of the Rpl22 target, ALOX12, an upstream regulator of fatty acid oxidation (FAO).
View Article and Find Full Text PDFBackground: miRNAs are small non-coding RNAs that regulate gene expression and are linked to cancer development and progression. miRNA profiles are currently studied as new prognostic factors or therapeutic perspectives. Among hematological cancers, myelodysplastic syndromes at higher risk of evolution into acute myeloid leukemia are treated with hypomethylating agents, like azacitidine, alone or in combination with other drugs, such as lenalidomide.
View Article and Find Full Text PDFMutations of splicing factor genes (including SF3B1, SRSF2, U2AF1 and ZRSR2) occur in more than half of all patients with myelodysplastic syndromes (MDS), a heterogeneous group of myeloid neoplasms. Splicing factor mutations lead to aberrant pre-mRNA splicing of many genes, some of which have been shown in functional studies to impact on hematopoiesis and to contribute to the MDS phenotype. This clearly demonstrates that impaired spliceosome function plays an important role in MDS pathophysiology.
View Article and Find Full Text PDFBackground: Mutations in the splicing factor are commonly seen in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), yet the specific oncogenic pathways activated by mis-splicing have not been fully elucidated. Inflammatory immune pathways have been shown to play roles in the pathogenesis of MDS, though the exact mechanisms of their activation in splicing mutant cases are not well understood.
Methods: RNA-seq data from mutant samples was analyzed and functional roles of interleukin-1 receptor-associated kinase 4 ( isoforms were determined.
BACKGROUND: Risk stratification and therapeutic decision-making for myelodysplastic syndromes (MDS) are based on the International Prognostic Scoring System–Revised (IPSS-R), which considers hematologic parameters and cytogenetic abnormalities. Somatic gene mutations are not yet used in the risk stratification of patients with MDS. METHODS: To develop a clinical-molecular prognostic model (IPSS-Molecular [IPSS-M]), pretreatment diagnostic or peridiagnostic samples from 2957 patients with MDS were profiled for mutations in 152 genes.
View Article and Find Full Text PDFBackground: Haploinsufficiency (HI) resulting from deletion of the long arm of chromosome 5 [del(5q)] and the accompanied loss of heterozygosity are likely key pathogenic factors in del(5q) myeloid neoplasia (MN) although the consequences of del(5q) have not been yet clarified.
Methods: Here, we explored mutations, gene expression and clinical phenotypes of 388 del(5q) vs. 841 diploid cases with MN [82% myelodysplastic syndromes (MDS)].
During transformation, myelodysplastic syndromes (MDS) are characterized by reducing apoptosis of bone marrow (BM) precursors. Mouse models of high risk (HR)-MDS and acute myelogenous leukemia (AML) post-MDS using mutant NRAS and overexpression of human BCL-2, known to be poor prognostic indicators of the human diseases, were created. We have reported the efficacy of the BCL-2 inhibitor, ABT-737, on the AML post-MDS model; here, we report that this BCL-2 inhibitor also significantly extended survival of the HR-MDS mouse model, with reductions of BM blasts and lineage negative/Sca1+/KIT+ (LSK) cells.
View Article and Find Full Text PDFThe BCL2-inhibitor, Venetoclax (VEN), has shown significant anti-leukemic efficacy in combination with the DNMT-inhibitor, Azacytidine (AZA). To explore the mechanisms underlying the selective sensitivity of mutant leukemia cells to VEN and AZA, we used cell-based isogenic models containing a common leukemia-associated mutation in the epigenetic regulator ASXL1. KBM5 cells with CRISPR/Cas9-mediated correction of the ASXL1 mutation showed reduced leukemic growth, increased myeloid differentiation, and decreased HOXA and BCL2 gene expression in vitro compared to uncorrected KBM5 cells.
View Article and Find Full Text PDFMDMX is overexpressed in the vast majority of patients with acute myeloid leukemia (AML). We report that MDMX overexpression increases preleukemic stem cell (pre-LSC) number and competitive advantage. Utilizing five newly generated murine models, we found that MDMX overexpression triggers progression of multiple chronic/asymptomatic preleukemic conditions to overt AML.
View Article and Find Full Text PDFSolid tumours modify their metabolic strategy to ensure sufficient biomass and energy to maintain a high rate of proliferation. However, solid tumours are characterised by a high proportion of quiescent cells and little is known about their metabolic profile. A tumour spheroid model with DLD1 cells was used to investigate the influence of a quiescent state on the cellular utilisation of glucose and glutamine.
View Article and Find Full Text PDFThe myelodysplastic syndromes (MDS) are common myeloid malignancies. Mutations in genes encoding different components of the spliceosome occur in more than half of all MDS patients. SF3B1 is the most frequently mutated splicing factor gene in MDS, and there is a strong association between SF3B1 mutations and the presence of ring sideroblasts in the bone marrow of MDS patients.
View Article and Find Full Text PDFMDS are characterized by anemia and transfusion requirements. Transfused patients frequently show iron overload that negatively affects hematopoiesis. Iron chelation therapy can be effective in these MDS cases, but the molecular consequences of this treatment need to be further investigated.
View Article and Find Full Text PDFTumor protein p53 (TP53) is the most frequently mutated gene in cancer. In patients with myelodysplastic syndromes (MDS), TP53 mutations are associated with high-risk disease, rapid transformation to acute myeloid leukemia (AML), resistance to conventional therapies and dismal outcomes. Consistent with the tumor-suppressive role of TP53, patients harbor both mono- and biallelic mutations.
View Article and Find Full Text PDFRecurrent cytogenetic aberrations, genetic mutations and variable gene expression have been consistently recognized in solid cancers and in leukaemia, including in Myelodysplastic Syndromes (MDS). Besides conventional cytogenetics, the growing accessibility of new techniques has led to a deeper analysis of the molecular significance of genetic variations. Indeed, gene mutations affecting splicing genes, as well as genes implicated in essential signalling pathways, play a pivotal role in MDS physiology and pathophysiology, representing potential new molecular targets for innovative therapeutic strategies.
View Article and Find Full Text PDF