Publications by authors named "Pelissier R"

Activation of the DNA-sensing STING axis by RNA viruses plays a role in antiviral response through mechanisms that remain poorly understood. Here, we show that the STING pathway regulates Nipah virus (NiV) replication in vivo in mice. Moreover, we demonstrate that following both NiV and measles virus (MeV) infection, IFNγ-inducible protein 16 (IFI16), an alternative DNA sensor in addition to cGAS, induces the activation of STING, leading to the phosphorylation of NF-κB p65 and the production of IFNβ and interleukin 6.

View Article and Find Full Text PDF

Marantaceae forests are tropical rainforests characterized by a continuous understory layer of perennial giant herbs and a near absence of tree regeneration. Although widespread in West-Central Africa, Marantaceae forests have rarely been considered in the international literature. Yet, they pose key challenges and opportunities for theoretical ecology that transcend the borders of the continent.

View Article and Find Full Text PDF
Article Synopsis
  • Accurately mapping tropical forests' aboveground biomass (AGB) is essential for effective carbon emission reduction and understanding the carbon cycle, yet existing maps often show inconsistent estimates.
  • To overcome this issue, the study focuses on creating high-quality reference AGB datasets using field plots and airborne LiDAR data from underrepresented regions in Central Africa and South Asia.
  • These reference maps, with detailed uncertainty information, will help enhance the accuracy of future Earth Observation missions and improve AGB mapping reliability.
View Article and Find Full Text PDF

Mixing crop cultivars has long been considered as a way to control epidemics at the field level and is experiencing a revival of interest in agriculture. Yet, the ability of mixing to control pests is highly variable and often unpredictable in the field. Beyond classical diversity effects such as dispersal barrier generated by genotypic diversity, several understudied processes are involved.

View Article and Find Full Text PDF

Intraspecific variability (IV) has been proposed to explain species coexistence in diverse communities. Assuming, sometimes implicitly, that conspecific individuals can perform differently in the same environment and that IV increases niche overlap, previous studies have found contrasting results regarding the effect of IV on species coexistence. We aim at showing that the large IV observed in data does not mean that conspecific individuals are necessarily different in their response to the environment and that the role of high-dimensional environmental variation in determining IV has largely remained unexplored in forest plant communities.

View Article and Find Full Text PDF

Plant ecologists and molecular biologists have long considered the hypothesis of a trade-off between plant growth and defence separately. In particular, how genes thought to control the growth-defence trade-off at the molecular level relate to trait-based frameworks in functional ecology, such as the slow-fast plant economics spectrum, is unknown. We grew 49 phenotypically diverse rice genotypes in pots under optimal conditions and measured growth-related functional traits and the constitutive expression of 11 genes involved in plant defence.

View Article and Find Full Text PDF

The human T-cell leukemia virus (HTLV)-1 is responsible for an aggressive neurodegenerative disease (HAM/TSP) and multiple neurological alterations. The capacity of HTLV-1 to infect central nervous system (CNS) resident cells, together with the neuroimmune-driven response, has not been well-established. Here, we combined the use of human induced pluripotent stem cells (hiPSC) and of naturally STLV-1-infected nonhuman primates (NHP) as models with which to investigate HTLV-1 neurotropism.

View Article and Find Full Text PDF

Reports indicate that intraspecific neighbours alter the physiology of focal plants, and with a few exceptions, their molecular responses to neighbours are unknown. Recently, changes in susceptibility to pathogen resulting from such interactions were demonstrated, a phenomenon called neighbour-modulated susceptibility (NMS). However, the genetics of NMS and the associated molecular responses are largely unexplored.

View Article and Find Full Text PDF

Data capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research-from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured.

View Article and Find Full Text PDF

Plant growth and grain filling are the key agronomical traits for grain weight and yield of rice. The continuous improvement in rice yield is required for a future sustainable global economy and food security. The heterotrimeric G protein complex containing a canonical α subunit (RGA1) couples extracellular signals perceived by receptors to modulate cell function including plant development and grain weight.

View Article and Find Full Text PDF

Nipah virus (NiV) is a highly pathogenic emerging bat-borne Henipavirus that has caused numerous outbreaks with public health concerns. It is able to inhibit the host innate immune response. Since the NF-κB pathway plays a crucial role in the innate antiviral response as a major transcriptional regulator of inflammation, we postulated its implication in the still poorly understood NiV immunopathogenesis.

View Article and Find Full Text PDF

SARS-CoV-2 has caused a global pandemic of COVID-19 since its emergence in December 2019. The infection causes a severe acute respiratory syndrome and may also spread to central nervous system leading to neurological sequelae. We have developed and characterized two new organotypic cultures from hamster brainstem and lung tissues that offer a unique opportunity to study the early steps of viral infection and screening antivirals.

View Article and Find Full Text PDF

During inflammatory diseases, cancer, and infection, the cGAS/STING pathway is known to recognize foreign or self-DNA in the cytosol and activate an innate immune response. Here, we report that negative-strand RNA paramyxoviruses, Nipah virus (NiV), and measles virus (MeV), can also trigger the cGAS/STING axis. Although mice deficient for MyD88, TRIF, and MAVS still moderately control NiV infection when compared with wild-type mice, additional STING deficiency resulted in 100% lethality, suggesting synergistic roles of these pathways in host protection.

View Article and Find Full Text PDF

As part of a trend towards diversifying cultivated areas, varietal mixtures are subject to renewed interest as a means to manage diseases. Besides the epidemiological effects of varietal mixtures on pathogen propagation, little is known about the effect of intraspecific plant-plant interactions and their impact on responses to disease. In this study, genotypes of rice (Oryza sativa) or durum wheat (Triticum turgidum) were grown with different conspecific neighbours and manually inoculated under conditions preventing pathogen propagation.

View Article and Find Full Text PDF
Article Synopsis
  • Plant immunity is influenced by both environmental factors and the surrounding microbiome, which enhances resistance to pests and pathogens.
  • Different types of plant neighborhoods affect immunity through mechanisms like competition, recognition, and signaling, highlighting the complex interactions among plants.
  • Positive modulation of immunity by neighboring plants suggests new insights for natural ecosystems and the potential for creating more diverse agricultural systems.
View Article and Find Full Text PDF
Article Synopsis
  • Africa faces significant climate change and population growth that poses a threat to its rainforests, requiring better understanding of forest composition and their vulnerability to change.
  • Using a large dataset of 6 million trees, researchers modeled the distribution of dominant tree species in central Africa, revealing patterns in forest composition across different climates and soils.
  • Findings indicate the northern and southern margins of forests are particularly vulnerable to climate and human-induced changes by 2085, providing essential data for conservation efforts.
View Article and Find Full Text PDF

Background And Aims: Terrestrial LiDAR scanning (TLS) data are of great interest in forest ecology and management because they provide detailed 3-D information on tree structure. Automated pipelines are increasingly used to process TLS data and extract various tree- and plot-level metrics. With these developments comes the risk of unknown reliability due to an absence of systematic output control.

View Article and Find Full Text PDF

Mapping aboveground forest biomass is central for assessing the global carbon balance. However, current large-scale maps show strong disparities, despite good validation statistics of their underlying models. Here, we attribute this contradiction to a flaw in the validation methods, which ignore spatial autocorrelation (SAC) in data, leading to overoptimistic assessment of model predictive power.

View Article and Find Full Text PDF
Article Synopsis
  • Forest biomass plays a crucial role in the Earth's carbon cycle and is essential for climate change initiatives like REDD+, but there is uncertainty in measuring aboveground biomass (AGB) in tropical forests.
  • The new Congo basin Forests AGB (CoFor-AGB) dataset includes AGB estimates and uncertainties for nearly 60,000 1-km pixels, based on field data from extensive forest management inventories in central Africa between 2000 and the early 2010s.
  • The dataset reveals a large-scale view of AGB variations in central Africa, providing valuable data for addressing uncertainties in forest biomass measurements, which is critical for environmental research and climate action.
View Article and Find Full Text PDF

Wood density (WD) relates to important tree functions such as stem mechanics and resistance against pathogens. This functional trait can exhibit high intraindividual variability both radially and vertically. With the rise of LiDAR-based methodologies allowing nondestructive tree volume estimations, failing to account for WD variations related to tree function and biomass investment strategies may lead to large systematic bias in AGB estimations.

View Article and Find Full Text PDF

Interferon (IFN) type I plays a critical role in the protection of mice from lethal Nipah virus (NiV) infection, but mechanisms responsible for IFN-I induction remain unknown. In the current study, we demonstrated the critical role of the mitochondrial antiviral signaling protein signaling pathway in IFN-I production and NiV replication in murine embryonic fibroblasts in vitro, and the redundant but essential roles of both mitochondrial antiviral signaling protein and myeloid differentiation primary response 88 adaptors, but not toll/interleukin-1 receptor/resistance [TIR] domain-containing adaptor-inducing IFN-β (TRIF), in the control of NiV infection in mice. These results reveal potential novel targets for antiviral intervention and help in understanding NiV immunopathogenesis.

View Article and Find Full Text PDF

Nipah virus (NiV) is a highly lethal zoonotic paramyxovirus that emerged at the end of last century as a human pathogen capable of causing severe acute respiratory infection and encephalitis. Although NiV provokes serious diseases in numerous mammalian species, the infection seems to be asymptomatic in NiV natural hosts, the fruit bats, which provide a continuous virus source for further outbreaks. Consecutive human-to-human transmission has been frequently observed during outbreaks in Bangladesh and India.

View Article and Find Full Text PDF

Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series.

View Article and Find Full Text PDF

During host infection, viral replication generates multiple subpopulations. Studies of viral diversity using high-throughput sequencing technologies provide a better understanding of the therapeutic effects as well as of the viral pathogenesis. This technical evolution led to an impressive number of studies analyzing this viral characteristic.

View Article and Find Full Text PDF