Tuberculosis (TB) is a serious public health problem. Development of experimental models and vaccines are essential to elucidate physiopathological mechanisms and to control the disease. Vascular endothelial growth factor (VEGF) is a potent activator of vascular permeability and angiogenesis.
View Article and Find Full Text PDFAngiotensins (Angs) modulate blood pressure, hydro-electrolyte composition, and antinociception. Although Ang (5-8) has generally been considered to be inactive, we show here that Ang (5-8) was the smallest Ang to elicit dose-dependent responses and receptor-mediated antinociception in the rat ventrolateral periaqueductal gray matter (vlPAG). Ang (5-8) antinociception seems to be selective, because it did not alter blood pressure or act on vascular or intestinal smooth muscle cells.
View Article and Find Full Text PDFCentral nervous system (CNS) tuberculosis (TB) is the most severe form of TB, characterized morphologically by brain granulomas and tuberculous meningitis (TBM). Experimental strategies for the study of the host-pathogen interaction through the analysis of granulomas and its intrinsic molecular mechanisms could provide new insights into the neuropathology of TB. To verify whether cerebellar mycobacterial infection induces the main features of the disease in human CNS and better understand the physiological mechanisms underlying the disease, we injected bacillus Calmette-Guerin (BCG) into the mouse cerebellum.
View Article and Find Full Text PDFWe have recently demonstrated that gonadal steroid hormones decrease formalin-induced temporomandibular joint nociception in rats. Given that the attenuation of inflammation is a potential mechanism underlying this antinociceptive effect, we evaluated the effect of gonadal steroid hormones on formalin-induced temporomandibular joint inflammation. Plasma extravasation, a major sign of acute inflammation, and neutrophil migration, an important event related to tissue injury, were evaluated.
View Article and Find Full Text PDFActivation of peripheral P2X3 and P2X2/3 receptors by endogenous ATP is essential to the development of inflammatory hyperalgesia. We have previously demonstrated that this essential role of P2X3 and P2X2/3 receptors in the development of mechanical hyperalgesia induced by the inflammatory agent carrageenan is mediated by an indirect sensitization of the primary afferent nociceptors dependent on the previous release of tumor necrosis factor alpha (TNF-α) and by a direct sensitization of the primary afferent nociceptors. Therefore, in this study we asked whether activation of P2X3 and P2X2/3 receptors contribute to the mechanical hyperalgesia induced by the inflammatory mediators involved in carrageenan-induced mechanical hyperalgesia, such as bradykinin, tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), chemokine-induced chemoattractant-1 (CINC-1), prostaglandin E₂ (PGE₂) and dopamine.
View Article and Find Full Text PDFThe aim of this study was to investigate the role of P2X3, P2X2/3 and P2X7 receptors in the development of TMJ hyperalgesia induced by carrageenan. We also investigated the expression of mRNA of P2X7 receptors in the trigeminal ganglia and the existence of functional P2X7 receptors in the rat's TMJ. The P2X1, P2X3 and P2X2/3 receptor antagonist TNP-ATP, but not the selective P2X7 receptor antagonist A-438079, significantly reduced carrageenan-induced TMJ inflammatory hyperalgesia.
View Article and Find Full Text PDFEndogenous angiotensin (Ang) II and/or an Ang II-derived peptide, acting on Ang type 1 (AT(1)) and Ang type 2 (AT(2)) receptors, can carry out part of the nociceptive control modulated by periaqueductal gray matter (PAG). However, neither the identity of this putative Ang-peptide, nor its relationship to Ang II antinociceptive activity was clarified. Therefore, we have used tail-flick and incision allodynia models combined with an HPLC time course of Ang metabolism, to study the Ang III antinociceptive effect in the rat ventrolateral (vl) PAG using peptidase inhibitors and receptor antagonists.
View Article and Find Full Text PDFActivation of P2X3,2/3 receptors by endogenous ATP contributes to the development of inflammatory hyperalgesia. Given the clinical importance of mechanical hyperalgesia in inflammatory states, we hypothesized that the activation of P2X3,2/3 receptors by endogenous ATP contributes to carrageenan-induced mechanical hyperalgesia and that this contribution is mediated by an indirect and/or a direct sensitization of the primary afferent nociceptors. Co-administration of the selective P2X3,2/3 receptors antagonist A-317491, or the non-selective P2X3 receptor antagonist, TNP-ATP, with carrageenan blocked the mechanical hyperalgesia induced by carrageenan, and significantly reduced the increased concentration of tumor necrosis factor alpha (TNF-alpha) and chemokine-induced chemoattractant-1 (CINC-1) but not of interleukin-1 beta (IL-1 beta) induced by carrageenan.
View Article and Find Full Text PDFAims: The aim of this study was to investigate whether the injection of nerve growth factor induces spontaneous nociceptive behavior in the intact or sensitized temporomandibular joint (TMJ) of rats.
Main Methods: NGF was injected into the TMJ 1 h after the TMJ injection of saline or carrageenan and the spontaneous nociceptive behavior was quantified. The mechanism involved in this phenomenon was investigated by the injection of NGF into the carrageenan-sensitized TMJ in the presence of indomethacin or of beta-adrenergic antagonists.
We have recently demonstrated that s.c.-injected 5-hydroxytryptamine (5-HT) induces nociception by an indirect action on the primary afferent nociceptor in addition to its previously described direct action.
View Article and Find Full Text PDFUnlabelled: The aim of this study was to further validate our carrageenan-induced temporomandibular joint (TMJ) inflammatory hyperalgesia model in rats by showing that administration of indomethacin before the initiation of inflammation would diminish the TMJ hyperalgesia. Using this model, we investigated whether norepinephrine and local beta-adrenoceptors contribute to the development of inflammatory TMJ hyperalgesia. Carrageenan-induced TMJ hyperalgesia was assessed by measuring the behavioral nociceptive responses, such as rubbing the orofacial region and flinching the head, induced by the injection of a low dose of 5-hydroxytryptamine into the TMJ sensitized 1 h before by a TMJ injection of carrageenan.
View Article and Find Full Text PDFThe aim of this study was to test the hypothesis that 5-hydroxytryptamine induces nociception by an indirect action on the primary afferent nociceptor in addition to its previously described direct action. Injection of 5-hydroxytryptamine into the s.c.
View Article and Find Full Text PDFRenin-angiotensin (Ang) system (RAS) peptides injected into the periaqueductal gray matter (PAG) elicit antinociception. Saralasin blocks Ang II-elicited antinociception. Thus, it is possible that endogenous RAS peptides could participate on the modulation of nociception in the PAG.
View Article and Find Full Text PDFThe intracerebroventricular administration of renin substrate or angiotensin II evokes antinociception in rodents, but the brain sites where most of the renin-angiotensin system peptides act are not yet known. This study describes the antinociceptive effects of microinjecting porcine renin substrate tetradecapeptide (RS) or angiotensins I (AI), II (AII) or III (AIII) into different regions of the periaqueductal gray matter (PAG), using the rat tail flick test. All the above peptides were effective following administration into several PAG regions.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
November 2002
We describe here a gradient HPLC procedure for the separation, and quantification by UV absorption of renin tri- and tetradecapeptide substrates, angiotensins I, II, III, IV and V, angiotensin-derived peptides, and peptidase inhibitors including amastatin, bestatin, pepstatin, lisinopril, a renin peptide inhibitor, Z-Pro-prolinal, N-[1-(R,S)-carboxy-2-phenylethyl]-L-Ala-L-Ala-L-Phe-p-aminobenzoate, and phosphoramidon. Most peptides and peptidase inhibitors were baseline-resolved within 32 min. The overall intra- and inter-assay precisions ranged from 0.
View Article and Find Full Text PDF