Purpose: Photon counting CT (PCCT) provides spectral measurements for material decomposition. However, the image noise (at a fixed dose) depends on the source spectrum. Our study investigates the potential benefits from spectral optimization using fast kV switching and filtration to reduce noise in material decomposition.
View Article and Find Full Text PDFBackground: Edge-on-irradiated silicon detectors are currently being investigated for use in full-body photon-counting computed tomography (CT) applications. The low atomic number of silicon leads to a significant number of incident photons being Compton scattered in the detector, depositing a part of their energy and potentially being counted multiple times. Even though the physics of Compton scatter is well established, the effects of Compton interactions in the detector on image quality for an edge-on-irradiated silicon detector have still not been thoroughly investigated.
View Article and Find Full Text PDFBackground: Photon counting detectors (PCDs) provide higher spatial resolution, improved contrast-to-noise ratio (CNR), and energy discriminating capabilities. However, the greatly increased amount of projection data in photon counting computed tomography (PCCT) systems becomes challenging to transmit through the slip ring, process, and store.
Purpose: This study proposes and evaluates an empirical optimization algorithm to obtain optimal energy weights for energy bin data compression.
Although CT imaging was introduced at Massachusetts General Hospital (MGH) quite early, with its first CT scanner installed in 1973, CT research at MGH started years earlier. The goal of this paper is to describe some of this innovative work and related accomplishments.
View Article and Find Full Text PDFIEEE Trans Radiat Plasma Med Sci
July 2021
Photon counting x-ray detectors (PCDs) with spectral capabilities have the potential to revolutionize computed tomography (CT) for medical imaging. The ideal PCD provides accurate energy information for each incident x-ray, and at high spatial resolution. This information enables material-specific imaging, enhanced radiation dose efficiency, and improved spatial resolution in CT images.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
September 2021
Guest editors Patrick La Riviere, Rebecca Fahrig, and Norbert Pelc introduce the JMI Special Section Celebrating X-Ray Computed Tomography at 50.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
September 2021
As we arrive at the 50th anniversary of the first computed tomography (CT) scan of a live patient, we take this opportunity to revisit the history of early CT development. It is not an exaggeration to say that the invention of CT may represent the greatest revolution in medical imaging since the discovery of x-rays. We cover events over a period of about two decades that started with the realization that accurate cross-sectional soft-tissue detail is possible and could be a significant advance.
View Article and Find Full Text PDFThe past decade has seen the increasing integration of magnetic resonance (MR) imaging into radiation therapy (RT). This growth can be contributed to multiple factors, including hardware and software advances that have allowed the acquisition of high-resolution volumetric data of RT patients in their treatment position (also known as MR simulation) and the development of methods to image and quantify tissue function and response to therapy. More recently, the advent of MR-guided radiation therapy (MRgRT) - achieved through the integration of MR imaging systems and linear accelerators - has further accelerated this trend.
View Article and Find Full Text PDFPurpose: Physicians utilize cerebral perfusion maps (e.g., cerebral blood flow, cerebral blood volume, transit time) to prescribe the plan of care for stroke patients.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
May 2021
Transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) is gaining significant acceptance as a noninvasive treatment for motion disorders and shows promise for novel applications such as blood-brain barrier opening for tumor treatment. A typical procedure relies on CT-derived acoustic property maps to simulate the transfer of ultrasound through the skull. Accurate estimates of the acoustic attenuation in the skull are essential to accurate simulations, but there is no consensus about how attenuation should be estimated from CT images and there is interest in exploring MR as a predictor of attenuation in the skull.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
July 2020
Developing photon-counting CT detectors requires understanding the impact of parameters, such as converter material, thickness, and pixel size. We apply a linear-systems framework, incorporating spatial and energy resolution, to study realistic silicon (Si) and cadmium telluride (CdTe) detectors at a low count rate. We compared CdTe detector designs with and pixels and Si detector designs with pixels of 30 and 60 mm active thickness, with and without tungsten scatter blockers.
View Article and Find Full Text PDFIn x-ray computed tomography (CT), materials with different elemental compositions can have identical CT number values, depending on the mass density of each material and the energy of the detected x-ray beam. Differentiating and classifying different tissue types and contrast agents can thus be extremely challenging. In multienergy CT, one or more additional attenuation measurements are obtained at a second, third or more energy.
View Article and Find Full Text PDFTools to simulate lower dose, noisy computed tomography (CT) images from existing data enable protocol optimization by quantifying the trade-off between patient dose and image quality. Many studies have developed and validated noise insertion techniques; however, most of these tools operate on proprietary projection data which can be difficult to access and can be time consuming when a large number of realizations is needed. In response, this work aims to develop and validate an image domain approach to accurately insert CT noise and simulate low dose scans.
View Article and Find Full Text PDFPurpose: Charge sharing and migration of scattered and fluorescence photons in an energy discriminating photon counting detector (PCD) degrade the detector's energy response and can cause a single incident photon to be registered as multiple events at different energies among neighboring pixels, leading to spatio-energetic correlation. Such a correlation in conventional linear, space-invariant imaging system can be usefully characterized by the frequency dependent detective quantum efficiency DQE(f). Defining and estimating DQE(f) for PCDs in a manner consistent with that of conventional detectors is complicated because the traditional definition of DQE(f) does not address spectral information.
View Article and Find Full Text PDFPurpose: A dynamic bowtie filter can modulate flux along both fan and view angles for reduced patient dose, scatter, and required photon flux, which is especially important for photon counting detectors (PCDs). Among the proposed dynamic bowtie designs, the piecewise-linear attenuator (Hsieh and Pelc, Med Phys. 2013;40:031910) offers more flexibility than conventional filters, but relies on analog positioning of a limited number of wedges.
View Article and Find Full Text PDFPurpose: Photon-counting, energy-resolving detectors are subject to intense research interest, and there is a need for a general framework for performance assessment of these detectors. The commonly used linear-systems theory framework, which measures detector performance in terms of noise-equivalent quanta (NEQ) and detective quantum efficiency (DQE) is widely used for characterizing conventional x-ray detectors but does not take energy-resolving capabilities into account. The purpose of this work is to extend this framework to encompass energy-resolving photon-counting detectors and elucidate how the imperfect energy response and other imperfections in real-world detectors affect imaging performance, both for feature detection and for material quantification tasks.
View Article and Find Full Text PDFPhoton-counting CT is an emerging technology with the potential to dramatically change clinical CT. Photon-counting CT uses new energy-resolving x-ray detectors, with mechanisms that differ substantially from those of conventional energy-integrating detectors. Photon-counting CT detectors count the number of incoming photons and measure photon energy.
View Article and Find Full Text PDFIEEE Trans Med Imaging
August 2018
Charge sharing, scatter, and fluorescence events in a photon counting detector can result in counting of a single incident photon in multiple neighboring pixels, each at a fraction of the true energy. This causes energy distortion and correlation of data across energy bins in neighboring pixels (spatio-energy correlation), with the severity depending on the detector pixel size and detector material. If a "macro-pixel" is formed by combining the counts from multiple adjacent small pixels, it will exhibit correlations across its energy bins.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
July 2018
Transcranial magnetic resonance-guided focused ultrasound continues to gain traction as a noninvasive treatment option for a variety of pathologies. Focusing ultrasound through the skull can be accomplished by adding a phase correction to each element of a hemispherical transducer array. The phase corrections are determined with acoustic simulations that rely on speed of sound estimates derived from CT scans.
View Article and Find Full Text PDFPurpose: Photon-counting detectors using CdTe or CZT substrates are promising candidates for future CT systems but suffer from a number of nonidealities, including charge sharing and pulse pileup. By increasing the pixel size of the detector, the system can improve charge sharing characteristics at the expense of increasing pileup. The purpose of this work is to describe these considerations in the optimization of the detector pixel pitch.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
April 2017
We present a fast, noise-efficient, and accurate estimator for material separation using photon-counting x-ray detectors (PCXDs) with multiple energy bin capability. The proposed targeted least squares estimator (TLSE) is an improvement of a previously described A-table method by incorporating dynamic weighting that allows the variance to be closer to the Cramér-Rao lower bound (CRLB) throughout the operating range. We explore Cartesian and average-energy segmentation of the basis material space for TLSE and show that, compared with Cartesian segmentation, the average-energy method requires fewer segments to achieve similar performance.
View Article and Find Full Text PDFPurpose: Multi-detector computed tomography (MDCT) enables volumetric scans in a single breath hold and is clinically useful for hepatic imaging. For simple tasks, conventional single energy (SE) computed tomography (CT) images acquired at the optimal tube potential are known to have better quality than dual energy (DE) blended images. However, liver imaging is complex and often requires imaging of both structures containing iodinated contrast media, where atomic number differences are the primary contrast mechanism, and other structures, where density differences are the primary contrast mechanism.
View Article and Find Full Text PDFPurpose: This paper summarizes the development of a high-power distributed x-ray source, or "multisource," designed for inverse-geometry computed tomography (CT) applications [see B. De Man et al., "Multisource inverse-geometry CT.
View Article and Find Full Text PDFPurpose: This paper presents an overview of multisource inverse-geometry computed tomography (IGCT) as well as the development of a gantry-based research prototype system. The development of the distributed x-ray source is covered in a companion paper [V. B.
View Article and Find Full Text PDF