Publications by authors named "Pekka Kaitaniemi"

Background: Woody plants (trees and shrubs) play an important role in terrestrial ecosystems, but their size and longevity make them difficult subjects for traditional experiments. In the last 20 years functional-structural plant models (FSPMs) have evolved: they consider the interplay between plant modular structure, the immediate environment and internal functioning. However, computational constraints and data deficiency have long been limiting factors in a broader application of FSPMs, particularly at the scale of forest communities.

View Article and Find Full Text PDF

Background: Laser scanning technology has opened new horizons for the research of forest dynamics, because it provides a largely automated and non-destructive method to rapidly capture the structure of individual trees and entire forest stands at multiple spatial scales. The structural data themselves or in combination with additional remotely sensed data also provide information on the local physiological state of structures within trees. The capacity of new methods is facilitated by the ongoing development of automated processing tools that are designed to capture information from the point cloud data provided by the remote measurements.

View Article and Find Full Text PDF

Background And Aims: Functional-structural plant models (FSPMs) allow simulation of tree crown development as the sum of modular (e.g. shoot-level) responses triggered by the local environmental conditions.

View Article and Find Full Text PDF

Ecological systems contain a huge amount of quantitative variation between and within species and locations, which makes it difficult to obtain unambiguous verification of theoretical predictions. Ordinary experiments consider just a few explanatory factors and are prone to providing oversimplified answers because they ignore the complexity of the factors that underlie variation. We used multi-objective optimization (MO) for a mechanistic analysis of the potential ecological and evolutionary causes and consequences of variation in the life-history traits of a species of moth.

View Article and Find Full Text PDF

Functional-structural plant growth models (FSPMs) combine the description of the structure of plants and the resource acquisition and partitioning at a detailed architectural level. They offer a means to study tree and stand development on the basis of a structurally accurate description that combines resource capture at the same level of detail. We describe here how a 'shoot-based' individual tree model, LIGNUM of Scots pine (Pinus sylvestris L.

View Article and Find Full Text PDF

Allometric equations are widely used in many branches of biological science. The potential information content of the normalization constant b in allometric equations of the form Y = bX(a) has, however, remained largely neglected. To demonstrate the potential for utilizing this information, I generated a large number of artificial datasets that resembled those that are frequently encountered in biological studies, i.

View Article and Find Full Text PDF

Numerous studies conducted in agro-ecosystems support the enemies hypothesis, which states that predators and parasites are more efficient in controlling pest densities in polycultures than in monocultures. Few similar studies, however, have been conducted in forest ecosystems, and we do not yet have evidence as to whether the enemies hypothesis holds true in forests. In a 2-year study, we investigated whether the survival of autumnal moth ( Epirrita autumnata) larvae and pupae differs between silver birch monocultures and two-species mixtures of birch with black alder, Norway spruce and Scots pine.

View Article and Find Full Text PDF

Allometric scaling laws have received increasing attention due to the recent theoretical advancements. However, existing evidence suggests that the scaling relationships may vary a lot without much consistency, which poses a challenge to the applicability of general theories. In this report, I demonstrate that much of the discrepancy may be an artefact caused by the limited use of methods for estimating the parameters in the allometric scaling equations.

View Article and Find Full Text PDF

The mast depression hypothesis has been put forward to explain the 9- to 10-year population cycle of the autumnal moth (Epirrita autumnata; Lepidoptera: Geometridae) in northern Fennoscandia. We analysed long-term data from Finnish Lapland in order to evaluate the critical assumption of the mast depression hypothesis: that better individual performance of herbivores, followed by high annual growth rate of populations, occurs in the year following mast seeding of the host, the mountain birch ( Betula pubescens ssp. czerepanovii).

View Article and Find Full Text PDF

Direct or plant-mediated interactions between herbivores may modify their spatial distribution among and within plants. In this study, we examined the effect of a leaf-chewing geometrid, the autumnal moth (Epirrita autumnata), on two different herbivore groups, leaf rolling Deporaus betulae weevils and Eriocrania spp. leafminers, both feeding on mountain birch (Betula pubescens ssp.

View Article and Find Full Text PDF

In birch, Betula pubescens, herbivore-induced delayed induced resistance (DIR) of defoliated trees may cause a strong reduction in the potential fecundity of a geometrid folivore Epirrita autumnata. In this study, we examined the biochemical basis of DIR in birch leaves during a natural outbreak of E. autumnata.

View Article and Find Full Text PDF