Publications by authors named "Pejman Naraghi-Arani"

Background: Studies for developing diagnostics and treatments for infectious diseases usually require observing the onset of infection during the study period. However, when the infection base rate incidence is low, the cohort size required to measure an effect becomes large, and recruitment becomes costly and prolonged. We developed a model for reducing recruiting time and resources in a COVID-19 detection study by targeting recruitment to high-risk individuals.

View Article and Find Full Text PDF

At-home testing with rapid diagnostic tests (RDTs) for respiratory viruses could facilitate early diagnosis, guide patient care, and prevent transmission. Such RDTs are best used near the onset of illness when viral load is highest and clinical action will be most impactful, which may be achieved by at-home testing. We evaluated the diagnostic accuracy of the QuickVue Influenza A+B RDT in an at-home setting.

View Article and Find Full Text PDF

The emergence of pathogens resistant to existing antimicrobial drugs is a growing worldwide health crisis that threatens a return to the pre-antibiotic era. To decrease the overuse of antibiotics, molecular diagnostics systems are needed that can rapidly identify pathogens in a clinical sample and determine the presence of mutations that confer drug resistance at the point of care. We developed a fully integrated, miniaturized semiconductor biochip and closed-tube detection chemistry that performs multiplex nucleic acid amplification and sequence analysis.

View Article and Find Full Text PDF

PCR-based techniques are widely used to identify disease causing bacterial and viral pathogens, especially in point-of-care or near-patient clinical settings that require rapid results and sample-to-answer workflows. However, such techniques often fail to differentiate between closely related species that have highly variable genomes. Here, a homogenous (closed-tube) pathogen identification and classification method is described that combines PCR amplification, array-based amplicon sequence verification, and real-time detection using an inverse fluorescence fluorescence-resonance energy transfer technique.

View Article and Find Full Text PDF

Design and successful implementation of a fully-integrated CMOS fluorescence biochip for DNA/RNA testing in molecular diagnostics (MDx) is presented. The biochip includes a 32×32 array of continuous wave fluorescence detection biosensing elements. Each biosensing element is capable of having unique DNA probe sequences, wavelength-selective multi-dielectric emission filter (OD of 3.

View Article and Find Full Text PDF

Background: The recently developed Xpert® Ebola Assay is a novel nucleic acid amplification test for simplified detection of Ebola virus (EBOV) in whole blood and buccal swab samples. The assay targets sequences in two EBOV genes, lowering the risk for new variants to escape detection in the test. The objective of this report is to present analytical characteristics of the Xpert® Ebola Assay on whole blood samples.

View Article and Find Full Text PDF

Background And Purpose: The ability to track changes in gene expression following viral infection is paramount to understanding viral pathogenesis. This study was undertaken to evaluate the nCounter, a high throughput digital gene expression system, as a means to better understand West Nile virus (WNV) dissemination and the inflammatory response against WNV in the outbred Swiss Webster (SW) mouse model over the course of infection.

Methodology: The nCounter Mouse Inflammation gene expression kit containing 179 inflammation related genes was used to analyze gene expression changes in multiple tissues over a nine day course of infection in SW mice following intraperitoneal injection with WNV.

View Article and Find Full Text PDF

A computational approach for identification and assessment of genomic sequence variability (GeneSV) is described. For a given nucleotide sequence, GeneSV collects information about the permissible nucleotide variability (changes that potentially preserve function) observed in corresponding regions in genomic sequences, and combines it with conservation/variability results from protein sequence and structure-based analyses of evaluated protein coding regions. GeneSV was used to predict effects (functional vs.

View Article and Find Full Text PDF

We have developed an automated cell counting method that uses images obtained at multiple focal heights to enumerate cells in confluent culture. By taking the derivative of image intensity with respect to focal height using two complementary images, we are able to count high-density monolayers of cells over a large image area. Our method resists errors arising from variability in the focal plane caused by flatness or tilt non-uniformities with a minimal amount of focal plane alignment, allowing the automated collection of images across a large area.

View Article and Find Full Text PDF

PriMux is a new software package for selecting multiplex compatible, degenerate primers and probes to detect diverse targets such as viruses. It requires no multiple sequence alignment, instead applying k-mer algorithms, hence it scales well for large target sets and saves user effort from curating sequences into alignable groups. PriMux has the capability to predict degenerate primers as well as probes suitable for TaqMan or other primer/probe triplet assay formats, or simply probes for microarray or other single-oligo assay formats.

View Article and Find Full Text PDF

Bluetongue virus (BTV) causes disease in domestic and wild ruminants and results in significant economic loss. The closely related Epizootic hemorrhagic disease virus (EHDV) has been associated with bluetongue-like disease in cattle. Although U.

View Article and Find Full Text PDF

Molecular methods, based on sequencing the region encoding the VP1 major capsid protein, have recently become the gold standard for enterovirus typing. In the most commonly used scheme, sequences more than 75% identical (>85% amino acid identity) in complete or partial VP1 sequence are considered to represent the same type. However, as sequence data have accumulated, it has become clear that the '75%/85% rule' may not be universally applicable.

View Article and Find Full Text PDF

A nucleic acid-based multiplexed assay was developed that combines detection of foot-and-mouth disease virus (FMDV) with rule-out assays for two other foreign animal diseases and four domestic animal diseases that cause vesicular or ulcerative lesions indistinguishable from FMDV infection in cattle, sheep and swine. The FMDV "look-alike" diagnostic assay panel contains 5 PCR and 12 reverse transcriptase PCR (RT-PCR) signatures for a total of 17 simultaneous PCR amplifications for 7 diseases plus incorporating 4 internal assay controls. It was developed and optimized to amplify both DNA and RNA viruses simultaneously in a single tube and employs Luminex liquid array technology.

View Article and Find Full Text PDF

A high-throughput multiplexed assay was developed for the differential laboratory detection of foot-and-mouth disease virus (FMDV) from viruses that cause clinically similar diseases of livestock. This assay simultaneously screens for five RNA and two DNA viruses by using multiplexed reverse transcription-PCR (mRT-PCR) amplification coupled with a microsphere hybridization array and flow-cytometric detection. Two of the 17 primer-probe sets included in this multiplex assay were adopted from previously characterized real-time RT-PCR (rRT-PCR) assays for FMDV.

View Article and Find Full Text PDF

Numerous Salmonella enterica food-borne illness outbreaks have been associated with contaminated vegetables, in particular sprouted seeds, and the incidence of reported contamination has steadily risen. In order to understand the physiology of S. enterica serovar Newport on plants, a screen was developed to identify transposon mutants that were defective in attachment to alfalfa sprouts.

View Article and Find Full Text PDF

Genetic diversity was characterized in 14 isolates of Grapevine fanleaf virus (GFLV) recovered from grapevine (Vitis vinifera). Virions were collected by immunocapture, and a 1557 bp fragment containing part of the viral coat protein gene and part of the untranslated region to its 3' side was amplified by RT-PCR. Sequence variation among isolates was characterized by restriction fragment length polymorphism (RFLP) analysis and by sequencing.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: