Publications by authors named "Peizhi Chen"

Background: Accurately modeling respiratory motion in medical images is crucial for various applications, including radiation therapy planning. However, existing registration methods often struggle to extract local features effectively, limiting their performance.

Objective: In this paper, we aimed to propose a new framework called CvTMorph, which utilizes a Convolutional vision Transformer (CvT) and Convolutional Neural Networks (CNN) to improve local feature extraction.

View Article and Find Full Text PDF

Background: Medical image registration plays an important role in several applications. Existing approaches using unsupervised learning encounter issues due to the data imbalance problem, as their target is usually a continuous variable.

Objective: In this study, we introduce a novel approach known as Unsupervised Imbalanced Registration, to address the challenge of data imbalance and prevent overconfidence while increasing the accuracy and stability of 4D image registration.

View Article and Find Full Text PDF

Lung image registration plays an important role in lung analysis applications, such as respiratory motion modeling. Unsupervised learning-based image registration methods that can compute the deformation without the requirement of supervision attract much attention. However, it is noteworthy that they have two drawbacks: they do not handle the problem of limited data and do not guarantee diffeomorphic (topology-preserving) properties, especially when large deformation exists in lung scans.

View Article and Find Full Text PDF

High-frequency oscillations (HFOs), observed within 80-500 Hz of magnetoencephalography (MEG) data, are putative biomarkers to localize epileptogenic zones that are critical for the success of surgical epilepsy treatment. It is crucial to accurately detect HFOs for improving the surgical outcome of patients with epilepsy. However, in clinical practices, detecting HFOs in MEG signals mainly depends on visual inspection by clinicians, which is very time-consuming, labor-intensive, subjective, and error-prone.

View Article and Find Full Text PDF