Bacterial gene expression systems play a crucial role in producing valuable biological macromolecules, such as recombinant proteins and polysaccharides. However, traditional inducible gene systems have limitations that need costly chemical inducers that can harm the host. To address these challenges, a novel peptide-activated auto-inducible gene expression system was developed in Bacillus subtilis, leveraging Accessory gene regulatory system (Agr), a two-component signal system, from Staphylococcus aureus to trigger gene expression in response to an auto-inducible peptide (AIP).
View Article and Find Full Text PDFMunicipal solid waste (MSW), a carbon-intensive waste stream, may create both instant and indirect impacts onto environmental and climate management. Despite multiple studies made for greenhouse gases (GHGs) emissions of municipal waste, this research aims to achieve a comprehensive assessment for the carbon cycle by exploring evolution of waste composition and temporal-spatial disparities in waste management. Carbon flows embodied in MSW have been estimated across 31 provinces in Mainland China in the period 2000-2018.
View Article and Find Full Text PDFIndustrial solid waste management and recycling are important to environmental sustainability. In this study, cobalt (Co) nanoparticles encapsulated in paint sludge-derived activated carbon (AC) were fabricated. The Co-AC possessed high conductivity, magnetic properties and abundant metal oxide impurities (TiAlSiO), which was applied as multifunctional catalyst for peroxymonosulfate (PMS) activation.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2024
Oriented generation of specific reactive oxygen species (ROS) has been challenging in peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs). In this work, we constructed a multifunctional catalyst composed of Ni NPs embedded in N-doped carbon nanotubes (NCNTs) with exposed Ni single-atom sites (Ni-NCNTs). The Ni-N single sites adjacent to the Ni NPs are more efficient for PMS adsorption and activation, resulting in enhanced production of singlet oxygen (O).
View Article and Find Full Text PDFBurning and dumping textile wastes have caused serious damage to the environment and are a huge waste of resources. In this work, cobalt nanoparticles embedded in active carbon fiber (Co/ACF) were prepared from bio-based fabric wastes, including cotton, flax and viscose. The obtained Co/ACF was applied as a catalyst for the heterogeneous activation of peroxymonosulfate (PMS) to remove bisphenol A (BPA) from an aqueous solution.
View Article and Find Full Text PDFThe simultaneous reduction of Cr(VI) and sequestration of the resulting Cr(III) in one process is highly desirable as a cost-effective and environmental-friendly approach for the decontamination of Cr(VI)-polluted wastewater. However, most of the existing adsorptive materials are only effective in low pH environments (pH = 1-3), severely restricting the adsorption efficiency and cost effectiveness. Herein, we proposed a chitosan-based magnetic porous microsphere (PPy@PMCS) for simultaneous Cr(VI) reduction and Cr(III) sequestration in a wide pH range.
View Article and Find Full Text PDFHeterogeneous activation of peroxymonosulfate (PMS) is one of the most promising techniques for wastewater treatment. Herein, an ingenious system by coupling of photocatalysis and PMS activation was developed, using hollow-structured amorphous prussian blue (A-PB) decorated on graphitic carbon nitride (g-CN) as the catalyst. Degradation of bisphenol A (BPA) via the A-PB-g-CN mediated PMS activation under visible light (Vis) was systematically investigated.
View Article and Find Full Text PDFIn this work, nitrogen-rich graphene-like carbon sheets (N-GLCS) with high specific surface area (488.4m/g), narrow pore distribution and high N-doping (18.4 at%) were prepared and applied as both adsorbent and catalyst for the removal of bisphenols.
View Article and Find Full Text PDF