With the development of brain-computer interface industry, large amounts of related applications have entered people's vision. BCI applications based on steady-state visual evoked potentials (SSVEP) are widely used because they do not require pre-training and have high information transmission rates. However, in the actual use of SSVEP stimulus paradigm, the subjects will produce visual fatigue with the use, and fatigue will affect the transmission efficiency.
View Article and Find Full Text PDFThis paper presents a novel approach to the phase space reconstruction technique, fractional-order phase space reconstruction (FOSS), which generalizes the traditional integer-order derivative-based method. By leveraging fractional derivatives, FOSS offers a novel perspective for understanding complex time series, revealing unique properties not captured by conventional methods. We further develop the multi-span transition entropy component method (MTECM-FOSS), an advanced complexity measurement technique that builds upon FOSS.
View Article and Find Full Text PDFObjective: The progression of brain-computer interfaces (BCIs) has been propelled by breakthroughs in neuroscience, signal processing, and machine learning, marking it as a dynamic field of study over the past few decades. Nevertheless, the nonlinear and non-stationary characteristics of steady-state visual evoked potentials (SSVEPs), coupled with the incongruity between frequently employed linear techniques and nonlinear signal attributes, resulted in the subpar performance of mainstream non-training algorithms like canonical correlation analysis (CCA), multivariate synchronization index (MSI), and filter bank CCA (FBCCA) in short-term SSVEP detection.
Methods: To tackle this problem, the novel fusions of common filter bank analysis, CCA dimensionality reduction methods, USSR models, and MSI recognition models are used in SSVEP signal recognition.
Introduction: In recent years, more and more attention has been paid to the visual fatigue caused by steady state visual evoked potential (SSVEP) paradigm. It is well known that the large-scale application of brain-computer interface is closely related to SSVEP, and the fatigue caused by SSVEP paradigm leads to the reduction of application effect. At present, the mainstream method of objectively quantifying visual fatigue in SSVEP paradigm is based on traditional canonical correlation analysis (CCA).
View Article and Find Full Text PDFThe mechanofluorochromic (MFC) characteristics of anthracene-based acceptor-donor-acceptor (A-D-A) fluorescent molecules are explored through a comprehensive investigation of their photophysical behaviors. Six 9,10-diheteroarylanthracene derivatives with varying acceptor groups (pyridin-4-yl, pyridin-3-yl, pyridin-2-yl, pyrimidin-5-yl, pyrazinyl and quinoxalinyl) are synthesized and systematically characterized. The photophysical properties in both solution and solid-state are examined, revealing subtle yet significant influences of the spatial arrangement and number of nitrogen atoms within the acceptor group on fluorescence emission.
View Article and Find Full Text PDFNowadays, more people tend to go to bed late and spend their sleep time with various electronic devices. At the same time, the BCI (brain−computer interface) rehabilitation equipment uses a visual display, thus it is necessary to evaluate the problem of visual fatigue to avoid the impact on the training effect. Therefore, it is very important to understand the impact of using electronic devices in a dark environment at night on human visual fatigue.
View Article and Find Full Text PDFThis study aimed to explore whether there was an effect on steady-state visual evoked potential (SSVEP) visual acuity assessment from the oblique effect or the stimulus orientation. SSVEPs were induced by seven visual stimuli, e.g.
View Article and Find Full Text PDFThe refresh rate is one of the important parameters of visual presentation devices, and assessing the effect of the refresh rate of a device on motion perception has always been an important direction in the field of visual research. This study examined the effect of the refresh rate of a device on the motion perception response at different stimulation frequencies and provided an objective visual electrophysiological assessment method for the correct selection of display parameters in a visual perception experiment. In this study, a flicker-free steady-state motion visual stimulation with continuous scanning frequency and different forms (sinusoidal or triangular) was presented on a low-latency LCD monitor at different refresh rates.
View Article and Find Full Text PDFMotor imagery (MI), based on the theory of mirror neurons and neuroplasticity, can promote motor cortical activation in neurorehabilitation. The strategy of MI based on brain-computer interface (BCI) has been used in rehabilitation training and daily assistance for patients with hemiplegia in recent years. However, it is difficult to maintain the consistency and timeliness of receiving external stimulation to neural activation in most subjects owing to the high variability of electroencephalogram (EEG) representation across trials/subjects.
View Article and Find Full Text PDFThe purpose of this study was to enhance the performance of steady-state visual evoked potential (SSVEP)-based visual acuity assessment with spatial filtering methods. Using the vertical sinusoidal gratings at six spatial frequency steps as the visual stimuli for 11 subjects, SSVEPs were recorded from six occipital electrodes (O1, Oz, O2, PO3, POz, and PO4). Ten commonly used training-free spatial filtering methods, i.
View Article and Find Full Text PDFThe iron-catalyzed δ-C(sp)-H bond difluoromethylthiolation and difluoromethylselenation of aliphatic amides with high site selectivity are reported. Essential to the success is the employment of an amide radical formed in situ to activate the inert C(sp)-H bond and the utilization of the easily handled PhSOSCFH and PhSOSeCFH as coupling reagents under mild conditions. This scalable protocol exhibits a broad substrate scope bearing versatile functional groups.
View Article and Find Full Text PDF. This study aimed to explore an online, real-time, and precise method to assess steady-state visual evoked potential (SSVEP)-based visual acuity more rapidly and objectively with self-adaptive spatial frequency steps..
View Article and Find Full Text PDFSensors (Basel)
September 2020
Visual evoked potential (VEP) has been used as an alternative method to assess visual acuity objectively, especially in non-verbal infants and adults with low intellectual abilities or malingering. By sweeping the spatial frequency of visual stimuli and recording the corresponding VEP, VEP acuity can be defined by analyzing electroencephalography (EEG) signals. This paper presents a review on the VEP-based visual acuity assessment technique, including a brief overview of the technique, the effects of the parameters of visual stimuli, and signal acquisition and analysis of the VEP acuity test, and a summary of the current clinical applications of the technique.
View Article and Find Full Text PDFIn the process of brain-computer interface (BCI), variations across sessions/subjects result in differences in the properties of potential of the brain. This issue may lead to variations in feature distribution of electroencephalogram (EEG) across subjects, which greatly reduces the generalization ability of a classifier. Although subject-dependent (SD) strategy provides a promising way to solve the problem of personalized classification, it cannot achieve expected performance due to the limitation of the amount of data especially for a deep neural network (DNN) classification model.
View Article and Find Full Text PDFReported herein is an unprecedented copper-catalyzed site-selective δ-C(sp)-H bonds activation of aliphatic sulfonamides for constructing the synthetically useful seven-membered -heterocycles. A key to success is the use of in-situ-formed amide radicals, to activate the inert C(sp)-H bond, and inexpensive TMSNCO, as a coupling reagent under mild conditions. To the best of our knowledge, this represents the first use of alkylamine derivatives as a five-membered synthon to prepare a seven-membered -heterocycles.
View Article and Find Full Text PDFA method for site-selective intermolecular δ/ε-C-H cyanation of aliphatic sulfonamides is developed using TsCN as the cyanating reagent, catalyzed by a Cu(I)/phenanthroline complex. The mild, expeditious, and modular protocol allows efficient remote C-H cyanation with good functional group tolerance and high regioselectivity. Mechanistic studies indicate that the reaction might proceed through a Cu(I)-mediated N-F bond cleavage to generate an amidyl radical, 1,5-HAT, and cyano group transfer of the resulting carbon radical with TsCN.
View Article and Find Full Text PDF