In air traffic control (ATC), speech communication with radio transmission is the primary way to exchange information between the controller and the pilot. As a result, the integration of automatic speech recognition (ASR) systems holds immense potential for reducing controllers' workload and plays a crucial role in various ATC scenarios, which is particularly significant for ATC research. This article provides a comprehensive review of ASR technology's applications in the ATC communication system.
View Article and Find Full Text PDFIn air traffic control (ATC), Key Information Recognition (KIR) of ATC instructions plays a pivotal role in automation. The field's specialized nature has led to a scarcity of related research and a gap with the industry's cutting-edge developments. Addressing this, an innovative end-to-end deep learning framework, Small Sample Learning for Key Information Recognition (SLKIR), is introduced for enhancing KIR in ATC instructions.
View Article and Find Full Text PDFIntroduction: Enhancing the generalization and reliability of speech recognition models in the field of air traffic control (ATC) is a challenging task. This is due to the limited storage, difficulty in acquisition, and high labeling costs of ATC speech data, which may result in data sample bias and class imbalance, leading to uncertainty and inaccuracy in speech recognition results. This study investigates a method for assessing the quality of ATC speech based on accents.
View Article and Find Full Text PDFUsing computers to replace pilot seats in air traffic control (ATC) simulators is an effective way to improve controller training efficiency and reduce training costs. To achieve this, we propose a deep reinforcement learning model, RoBERTa-RL (RoBERTa with Reinforcement Learning), for generating pilot repetitions. RoBERTa-RL is based on the pre-trained language model RoBERTa and is optimized through transfer learning and reinforcement learning.
View Article and Find Full Text PDF