Publications by authors named "Peiyang Gu"

Regulating macrophage phenotypes to reconcile the conflict between bacterial suppression and tissue regeneration is ideal for treating infectious skin wounds. Here, an injectable immunoregulatory hydrogel (SrmE20) that sequentially drives macrophage phenotypic polarization (M0 to M1, then to M2) was constructed by integrating anti-inflammatory components and proinflammatory solvents. experiments demonstrated that the proinflammatory solvent ethanol stabilized the hydrogel structure, maintained the phenolic hydroxyl group activity, and achieved macrophages' proinflammatory transition (M0 to M1) to enhance antibacterial effects.

View Article and Find Full Text PDF

Organic photothermal materials based on conjugated structures have significant potential applications in areas such as biomedical diagnosis, therapy, and energy conversion. Improving their photothermal conversion efficiency through molecular design is critical to promote their practical applications. Especially in similar structures, understanding how the position of heteroatoms affects the conversion efficiency is highly desirable.

View Article and Find Full Text PDF

Photocatalytic reduction of 4-nitrophenol (4-NP) for converting it to nontoxic 4-aminophenol (4-AP) is one of the most efficient approaches for removing toxic 4-NP. Using porous organic polymers (POPs) as the support to immobilize noble metal catalysts has exhibited remarkable reduction performance but is rarely reported. Herein, a cationic triphenylamine-based POP was synthesized by quaternization to immobilize PtCl to prepare an efficient photocatalyst named DCM-TPA-Pt for the reduction of 4-NP to 4-AP in the presence of NaBH.

View Article and Find Full Text PDF

Described here is a visible-light-promoted cascade carboxylation/arylation of indole-tethered unactivated alkenes with CO to access various carboxylated indole-fused heterocycles. This reaction is initiated by the addition of a CO radical anion to the alkene motif toward an alkyl carbon radical, followed by its addition to the aromatic ring, and then rearomatization to afford the final products. This reaction provides a facile and sustainable protocol for the construction of carboxylated indole-fused heterocycles using CO as the carboxylic source.

View Article and Find Full Text PDF

A BODIPY-containing conjugated microporous polymer (CMP, LBFD-1) was modified with calixarene to develop a hydrophilic CMP (LBFD-2) with broader absorption extending to the near-infrared-II region. LBFD-2 exhibited an HO production rate of 2.14 mmol g h in the air without any sacrificial agents.

View Article and Find Full Text PDF

This study introduces a self-driven system that effectively achieves synchronized sulfur recovery and hydrogen production using a Zn-air battery. The system ingeniously integrates the sulfur oxidation reaction (SOR) and the hydrogen evolution reaction (HER) into a single, efficient process. Central to this system is the trifunctional phosphorus-doped cobalt molybdate catalyst (P-CoMoO/NF), which exhibits superior performance in both HER (η = 0.

View Article and Find Full Text PDF

Pyrophosphoric acid (PPi) is a crucial indicator for monitoring adenosine triphosphate hydrolysis processes, and abnormal PPi levels in the human body seriously threaten human health. Thus the efficient detection of the concentration of PPi in the aqueous solution is important and urgent. This paper described the successful synthesis of a tetraphenylethylene (TPE) derivative, named as TPE-4B, which contained four chelate pyridinium groups exhibiting aggregation-induced emission characteristics.

View Article and Find Full Text PDF
Article Synopsis
  • Structural and physiological cues influence how cells migrate and organize in space, which is essential for bone regeneration.
  • A new microchannel scaffold was created using a special freeze-casting method, incorporating elements like polydopamine-coated nano-hydroxyapatite to enhance cell interaction and promote osteogenic differentiation of stem cells.
  • The scaffold boosts the production of colony-stimulating factor-1 (CSF-1), which engages with its receptor on macrophages, activating a beneficial immune response (M2 phenotype) that significantly aids in bone healing.
View Article and Find Full Text PDF

Bone regenerative scaffolds with a bionic natural bone hierarchical porous structure provide a suitable microenvironment for cell migration and proliferation. Here, a bionic scaffold (DP-PLGA/HAp) with directional microchannels is prepared by combining 3D printing and directional freezing technology. The 3D printed framework provides structural support for new bone tissue growth, while the directional pore embedded in the scaffolds provides an express lane for cell migration and nutrition transport, facilitating cell growth and differentiation.

View Article and Find Full Text PDF
Article Synopsis
  • A new photocatalyst called LDPO-2 was created using a porphyrin-based conjugated microporous polymer, enhancing its ability to absorb visible light and interact with water.
  • LDPO-2 demonstrated over 99.5% efficiency in removing bisphenol A (BPA) in just 12 minutes when exposed to visible light.
  • The study explored the photocatalytic mechanism and potential degradation pathways, showing that LDPO-2 also effectively removes similar compounds, indicating its usefulness for real-world water treatment applications.
View Article and Find Full Text PDF

Rational design and exploration of oxygen evolution reaction (OER) electrocatalysts with exceptional performance are crucial for the advancement of the hydrogen energy economy. In this study, vanadium/cobalt (V/Co) dual-doped nickel sulfide (NiS) nanowires were synthesized on a nickel foam (NF) substrate to overcome the sluggish kinetics typically associated with OER. The resulting catalyst exhibited outstanding electrocatalytic activity towards OER in a 1.

View Article and Find Full Text PDF

Nanoparticles (NPs) transfer is usually induced by adding ligands to modify NP surfaces, but aggregation of NPs oftentimes hampers the transfer. Here, we show that aggregation during NP phase transfer does not necessarily result in transfer failure. Using a model system comprising gold NPs and amphiphilic polymers, we demonstrate an unusual mechanism by which NPs can undergo phase transfer from the aqueous phase to the organic phase via a single-aggregation-single pathway.

View Article and Find Full Text PDF

Intermittent delivery of parathyroid hormone (PTH) could effectively promote bone regeneration, but the need for daily injection administration has limited its further clinical applications. Exposure to magnetic stimulation could regulate cell fate to promote osteogenesis. Herein, we developed a magnetized hydrogel with programmed PTH release and simultaneous magnetic actuation to promote osteogenic commitment.

View Article and Find Full Text PDF

Three "π"-shaped D-A-type thiodiazoloquinoxaline derivatives with different electronic structures and rotations have been prepared. Their particular structures allow these molecules to possess a broad absorption range and sufficient intramolecular motions, dissipating energy through a thermal deactivation pathway. Among the three materials, showed the best steam generation efficiency (84.

View Article and Find Full Text PDF

Organic luminogens (OLs) that emit strong fluorescence in both solution and the aggregated state, referred to as dual-state emission luminogens (DSEgens), are highly desirable because of their capability to achieve multiple functions within onefold materials. The fluorescence of OLs, including DSEgens, with intramolecular charge transfer characteristics, often decreases in solution as the solvent polarity increases, namely the positive solvatokinetic effect, resulting in inferior environmental stability. In this work, fluorination to naphthalimide (NI)-cyanostilbene (CS) derivatives was adopted to construct novel DSEgens (NICSF-X, X = B, P, M, and T, respectively).

View Article and Find Full Text PDF

Stabilizing liquids based on supramolecular assembly (non-covalent intermolecular interactions) has attracted significant interest, due to the increasing demand for soft, liquid-based devices where the shape of the liquid is far from the equilibrium spherical shape. The components comprising these interfacial assemblies must have sufficient binding energies to the interface to prevent their ejection from the interface when the assemblies are compressed. Here, we highlight recent advances in structuring liquids based on non-covalent intermolecular interactions.

View Article and Find Full Text PDF

Deep red/near-infrared (NIR, >650 nm) emissive organic luminophores with aggregation-induced emission (AIE) behaviours have emerged as promising candidates for applications in optoelectronic devices and biological fields. However, the molecular design philosophy for AIE luminogens (AIEgens) with narrow band gaps are rarely explored. Herein, we rationally designed two red organic luminophores, FITPA and FIMPA, by considering the enlargement of transition dipole moment in the charge-transfer state and the transformation from aggregation-caused quenching (ACQ) to AIE.

View Article and Find Full Text PDF

Integrating a biomimetic extracellular matrix to improve the microenvironment of 3D printing scaffolds is an emerging strategy for bone substitute design. Here, a "soft-hard" bone implant (BM-g-DPCL) consisting of a bioactive matrix chemically integrated on a polydopamine (PDA)-coated porous gradient scaffold by polyphenol groups is constructed. The PDA-coated "hard" scaffolds promoted Ca chelation and mineral deposition; the "soft" bioactive matrix is beneficial to the migration, proliferation, and osteogenic differentiation of stem cells in vitro, accelerated endogenous stem cell recruitment, and initiated rapid angiogenesis in vivo.

View Article and Find Full Text PDF

Electrocatalyzed urea-assisted wastewater splitting is a promising approach for sustainable hydrogen production. However, the lack of cost-efficient electrocatalysts hinders its practical application. Herein, bimetal phosphide (NiCoP) nanowire arrays decorated with ultrathin NiFeCo metal-organic framework (NiFeCo-MOF) nanosheets on porous nickel foam (NF) were designed for urea-assisted wastewater splitting.

View Article and Find Full Text PDF

Facilitating cell ingrowth and biomineralized deposition inside filaments of 3DP scaffolds are an ideal bone repair strategy. Here, 3D printed PLGA/HA scaffolds with hydroxyapatite content of 50% (P5H5) and 70% (P3H7) were prepared by optimizing 3D printing inks, which exhibited good tailorability and foldability to meet clinical maneuverability. The supercritical CO foaming technology further endowed the filaments of P5H5 with a richer interconnected pore structure (P5H5-C).

View Article and Find Full Text PDF

To better exploit all-liquid 3D architectures, it is essential to understand dynamic processes that occur during printing one liquid in a second immiscible liquid. Here, the interfacial assembly and transition of 5,10,15,20-tetrakis(4-sulfonatophenyl) porphyrin (H TPPS) over time provides an opportunity to monitor the interfacial behavior of nanoparticle surfactants (NPSs) during all-liquid printing. The formation of J-aggregates of H TPPS at the interface and the interfacial conversion of the J-aggregates of H TPPS to H-aggregates of H TPPS is demonstrated by interfacial rheology and in situ atomic force microscopy.

View Article and Find Full Text PDF

Water-walking insects can harness capillary forces by changing their body posture to climb or descend the meniscus between the surface of water and a solid object. Controlling surface tension in this manner is necessary for predation, escape and survival. Inspired by this behaviour, we demonstrate autonomous, aqueous-based synthetic systems that overcome the meniscus barrier and shuttle cargo subsurface to and from a landing site and a targeted drop-off site.

View Article and Find Full Text PDF

A silk fibroin silicon-based composite aerogel (SSA) has been modified via a SuFEx reaction for application in the adsorption of anionic pollutants and antimicrobials in water. The tyrosine fragment in the silk fibroin was modified by a high yielding SuFEx click reaction. A quaternary ammonium salt functionality was introduced into the silk fibroin protein and the modified silk fibroin protein was crosslinked with tetraethyl orthosilicate.

View Article and Find Full Text PDF

Two small molecular monomers, ph-TPE and ph-TPE-CN, and their homopolymers Poly (ph-TPE) and Poly (ph-TPE-CN) containing tetra phenylethylene and sulfate structures, were synthesized by a sulfur (VI) fluorine exchange click reaction (SuFEx) and radical polymerization. All the monomers and polymers exhibit a typical aggregation-induced emission (AIE) effect both in the solid state and aggregated state. Moreover, based on the intermolecular charge transfer (ICT) effect between the tetra phenylethylene chromophore and p-nitrophenol, both polymers could be used for the selective detection of p-nitrophenol.

View Article and Find Full Text PDF

Developing organic photoluminescent materials with high emission efficiencies in the solid state under a water atmosphere is important for practical applications. Herein, we report the formation of both intra- and intermolecular hydrogen bonds in three tautomerizable Schiff-base molecules which comprise active hydrogen atoms that act as proton donors and acceptors, simultaneously hindering emission properties. The intercalation of water molecules into their crystal lattices leads to structural rearrangement and organic hydrate luminogen formation in the crystalline phase, triggering significantly enhanced fluorescence emission.

View Article and Find Full Text PDF